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Section 1

INTRODUCTION

1.1 Identification

This is the Software Engineering Guidebook (SEG), a NASA Contractor's Report produced under

the Computer Software Services (CSS) Contract, NAS2-13210 at NASA Ames. This Guidebook
describes an orderly set of engineering methods for creating quality software on small to medium

sized, non-critical risk projects under NASA funding.

1.2 Scope

Intended Audience

The guidebook is written for managers and engineers who manage, develop, enhance and/or
maintain non-critical software in NASA environments.

Ap.olir,alm 

This guidebook is equally applicable to software development of new systems, enhancements to
existing systems and maintenance of problems for an established software base. Although
traditionally these areas of software engineering have been separated, for purposes of this

guidebook, the separations are not maintained. All forms of software engineering share common
elements of a repeated requirements definition, design, implementation, testing and release cycle.
Development, enhancement and problem repair are essentially the same activity carried out at
different times during the software's lifespan.

It is appropriate to reuse existing software during development of new applications. It is also
appropriate to write new software to perform a requested software maintenance modification of an

existing application. This blurring.of the traditional distinction between development and maintenance
names this the Software Engineenng (not development) Guidebook.

Engineering Support Assumptions and Recommendations

This guidebook is written (and has an adopted a tone) on the assumption that software projects are
supported by a separate (or possibly integral) Software Engineering Process Group (SEPG)
responsible for providing and promoting improvements in the software engineering process. The

SEPG is separate from Assurance and other qu_ty improvement groups and oriented specifically to
improving the means of engineering sottware, t ne establishment of a SEPG and its responsibilities
are described in [FOWLER].

Site Customization of SEG methods

The guidebook provides a formalized Software Engineering Process with descriptions of common

SEPG _ methods, activities, phases, and deliverables applicable to software engineering
projects. The purpose of such formalization is to foster a duplicable process that can be applied
consistendy with predictably successful results.

1



Thisguidebook,aswith anyguidebook,shouldbecustomizedandmadeappropriatefor application
to anyspecificsiteandenvironment.Thesupportedmethodsdescribedherecanandshouldbe

supplemented or replaced entirely by a specific site's SEPG supported methods.

Sup.ported vs. Approved Methods

software engineering methods consist of one or a combination of the following three
industry accepted methodologies: structured, object-oriented (OO) and rapid prototyping. Each of
these three methods are defined by published tools, approaches, and definitions of products

generated. The SEPG will support these methods by providing training and consulting. These
methods are described in Section 4, "Supported Development Methodologies."

Software engineering methods not supported by the SEPG and SEG will be _ for engineering
software if they are supported in the data processing industry by published works and commercially
available tools. Accepted methods may be used to engineer software but will not be supported by
training or consulting provided by the SEPG.

Software Engiaeering Overview

A Software Engineering Process can be defined as prescribed activities conducted during defined
life-cycle phases to produce specific products or deliverables. Software engineering activities are
performed by software engineers using prescribed methods, techniques, and tools. Phases end

when a review verifies that the activity for that phase is complete and the product is correct. Projects
engage in activities in order to produce deliverables. Therefore, when a phase is over, associated
deliverables must be complete and correct. Sections 3 and 4 provide explanations of the software
engineering process and supported methods.

1.3 Purpose

This document provides clearly defined descriptions of methods for engineering software to meet the
requirements of small to medium and non-critical risk tasks. These methods are still entirely
appropriate for larger and/or higher and more critical-risk tasks, though the associated task structure,

assurance and documentation requirements would be significantly larger and more complex.

1.4 Guidebook Status

This is version 2.0, dated May 31, 1993. This document was developed using the NASA Software
Documentation Standard, Template NASA-DID-999. No sections are rolled out into subordinate
volumes.

1.5 Organization

The guidebook's major sections are as follows: _ :

Section 3, Software Engineering Life Cycles and Methodologies, contains an overview of
approaches and techniques for developing quality software.

Section 4, Supported Development Methodologies, describes specific SEPG supported
development methodologies.

Section 5, Assurance, describes standards, reviews and testing techniques for ensuring
development of quality software. -..................

Section 6, Configuration Management, describes configuration control and change management
approaches to ensure known and controlled configurations and releases.

2
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Section 3

SOFTWARE ENGINEERING LIFE CYCLES and METHODOLOGIES

3.1 Software Engineering Approach

Software Engineering is the creation of software products by applying systematic engineering
techniques, assurance activities and configuration control methods over the life cycle of a product
from conception through development, operation and maintenance to eventual retirement.
Application of general engineering techniques entails dividing a complex problem into achievable and

manageable pieces, and for each piece, applying specific methods to generate known and verifiable
products during each phase.

Correct application of software engineering activities should produce software that performs the

intended job properly. The software engineering process is meant to produce a quality product that is
free from errors. The entire process should be controllable, repeatable and predictable.

The following subsections will provide a summary of the information contained in the remainder of
the guidebook. The principles in each section must be addressed for any software engineering task.
The selection of the methods and approach appropriate for a particular project is a combined
engineering and management responsibility. These approaches and methods should be detailed in
each project's Management Plan.

3.2 Software Engineering Life Cycles

All development activities are part of a process (a series of actions, changes or procedures) that
generates products or results. If the process is chaotic (disorganized or confused), this may
accidentally lead to a successful conclusion. If it is coherent and follows a comprehensible sequence,
it tends to lead more often to a predictably successful result.

Figure 3.2-1 is the graphical depiction of a Software Engineering Process. Such a depiction is often
referred to as a life cycle because it shows all the activities that can occur from "cradle to grave"
within the life span of a piece of software. Each phase shows the SEPG supported software
engineering methods and how testing activities fit into the life cycle.

Depending on the size, complexity, risk and development methods selected, the phases of a

development process can be structured with more or less complexity than shown. A large complex
system product with several subsystems may have the Software Detailed Design Phase broken into
preliminary and detailed design and implementation phases, one set for each subsystem.
Additionally the System Integration phase might consist of several subsystem integrations leading to
a full system Test and Integration phase. A small development may only consist of two discrete
activities before delivery: requirements def'mition and design/implementation (including testing).
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3.3 Software Engineering Methods

The methods described in this guidebook are supported by the SEPG; that is, the software engineers
will provide or arrange training and consulting for these methods. The supported methods were
selected because they are commonly available and accepted engineering techniques which have been
published and are supported by commercially available tools. Use of the supported methods do not
guarantee a successful project but do increase the capability to determine the customer's true
requirements and provide an appropriate product that meets customer satisfaction.

Other software methods may be used to engineer software. Though these methods may not be
supported by the SEPG training and consulting staff, they can be afX&P_t_ for use if they are used in
the industry, published and available, and have commercially available support tools.

3.3.1 Supported Methods

Each SEPG supported engineering activity is to be completed using one or a combination of three
basic approaches: structured, object-oriented (OO), or rapid prototyping (RP). These approaches
may be used exclusively and consistently; e.g., 100% structured development. Alternatively,
techniques may be combined for a particular project to suit the needs of a particular application or
development environment. For instance Object-Oriented Analysis (OOA) and Design (OOD) can be
effectively combined with structured programming. Structured or Object-Oriented techniques can be
combined with rapid prototyping and do structured rapid prototyping or object-oriented rapid
prototyping. Any such reasonable combination will be supported by the SEPG.

Each of these three basic techniques is defined by the tools and the products of those tools when used
by developers in application development. In other words, you can tell if an engineer is doing
Structured Analysis (SA) or Object-Oriented Analysis by looking at the tools they are applying to the
Requirements Analysis activity and whether Data Flow Diagrams or Object Information Models are
produced. The tools and products applicable to Structured and Object-Oriented techniques,
respectively, are shown in Section 4, "Supported Development Methodologies".

3.3.2 Concurrent Engineering

In Figure 3.2-1, the engineering phases overlap. In the older waterfall development life cycle
models, each of the phases were supposed to complete with a formal review before any work on the
next phase began. Contemporary engineering approaches generally overlap the phases in a
concurrent rather than sequential manner. The actual amount of overlap can vary from almost none
to almost 100%. Defining known configurations (baselining) and controlling them (configuration
management) are still required before proceeding, as shown in Figure 3.2-1. Concurrent engineering
has several benefits which can lead to higher quality products:

• Rework is reduced because all skills are available on the task and communication about

implementation feasibility can occur more readily;

• Consistency with most published software engineering standards, including NASA and DoD,
which now encourage concurrent engineering during software development;

• With one underlying graphic representation, Object-oriented Analysis and Object-Oriented
Design are really one activity with concurrent prototyping recommended;

• If you prototype, you are already doing it: you must have a design to produce a prototype, yet
prototyping is a requirements discovery technique.



3.4 Documentation

Good documentation is a software engineering tool. Documentation is part of the project work, part

of the project deliverables, and part of the tools that produce quality products. It is not an extra
burden added onto coding or design phases of development. Good documentation accomplishes

several purposes during the life cycle:

• Can reduce development costs by providing correct, complete, and exact blueprints for

programmers, which allows implementation and testing to take less time while producing
better results.

• Can reduce subsequent maintenance and enhancement costs by providing correct, complete,
and exact models for programmers to use to understand, design, and test, which allows

implementation and testing to take less time while producing better results.

• Acts as a tangible demonstration that early design work has been accomplished.

• Provides a stand-alone representation of the work, which can be reviewed or inspected

independent of the author's presentation.

• Provides additional understanding of the product or its operation not obvious in the product
itself.

• Provides protection from the "big bus" threat (if the developer steps in front of a big bus, will
any tangible work remain?) and allows staffmg changes with minimal impact.

Documentation must be useful and appropriate for the product and project and satisfy any

standards or policies such as AHB 5333.1. Documentation blindly produced seldom serves _yone
and may be a complete waste of time. Appropriate documentation is easy to read and commumcates
significant ideas to those who have a need. Document organization should be layered; with larger
scope concepts presented first and more detail available later. Managers needing an overview should
not need to read as far as a programmer.

A preliminary User Guide should be produced early in the development. The User Guide can act as
a prototyping tool to help formulate the initial system concepts and expectations of the system's
appearance and capabilities prior to requirements definition. The user guide only deals with the
interfaces: inputs, outputs, and visible response of the system.

All projects' documents should follow the organization, format, and content placement described in
the NASA Software Documentation Standard templates, called "DIDs" (Data Item Descriptions),

which are specific for particular documents (e.g. NASA-DID-P200 is the format for a requirements
document, NASA-DID-P600 is for a User's Guide). The DIDs do not require that a specific

methodology be used. DIDS only provide a standard format and organization for the developed
information.

Different development methods will populate the documents with different information or provide a
different emphasis. Even though the DIDs provide the general format and content required, an
object-oriented development will produce a Product Specification with different content than that of a
structured development because the tools and methods are different. The SEP(3 has specific
examples for using the DIDs in different development me.thods.

Automated documentation support should be considered an essential part of the development
environment. Document production should be a byproduct of the requirements, design, and

implementation processes, and well-supported by the tools that help generate the software designs
and products. Documentation information are the requirements, design and the comments in the
code. If documentation is a required deliverable, it should be assembled from the requirements,

design and code.



3.5 Assurance

A quality product is measured by how well it meets customer expectations. Using methodical
development processes will help properly determine customer expectations and document them as
requirements, and generate a design and product which matches those expectations. Assurance
activities performed in parallel with and as part of the development will set and check conformance to
standards to ensure that the development and its products are proceeding as planned.

Assurance activities are performed on products over the entire development life cycle. The primary
assurance activities covered in this guidebook are: Risk Analysis, Quality Assurance (QA),

Verification and Validation (V&V) and Problem Reporting. All of these assurance activities should
be addressed by any task developing or maintaining software.

Risk Analysis must be performed as part of good engineering practices and in response to NASA,
see [NMI] and Ames requirements, see [AHB]. Specific risks must be identified, evaluated, and
mitigation planned. The degree of risk inherent in the development or in the end use of a product will

determine the rigorousness of development and assurance. Higher risk projects and products require
more care and checking than low risk projects and products. The identified project and product risks
and the planned measures to reduce risk must be documented in the project's Management Plan.

Quality Assurance (QA) is the setting of product and process standards of performance and the
checking for conformance to those standards. Each project should estabhsh development standards
appropriate for the environments. Baseline (or beginning) standards can be obtained from a variety
of sources (Company standards, bookstores, etc.) and should be specifically adapted to the projects
environment and goals. AHB 5333.1 establishes minimum standards for risk determination,
documentation and reviews.

This guidebook provides guidelines for SEPG supported development methods. A project manager
should select a methodology, customize it as necessary, and make it standard for the project. The
standard should be checked as part of all technical reviews.

Verification & Validation (V&V) are the means to ensure that a product which does the right job is
produced. V&V is usually done by design reviews, simulation, and testing. Reviews are required
by Ames Assurance Requirements [AHB]; the types of reviews are determined by project risk level.
Software Formal Inspections can be a very effective technical review process for finding errors.
Testing and test planning should be an integral part of the development, but should not be the
primary error detection mechanism. Both reviewing and testing assume an orderly and known

development process is being followed. ........ = _::_-- ..... ---_ -_ _ _ ,_ _-

Problem reporting and resolution should be standard procedure for every tasklthat releases an_or
supports products. Problem reporting is especially critical for products in pre-release testing and for
the first year after release. Error dfscovery rates over time provide valuable indicators of the quality
of the product and development process.

3.6 Configuration Management

Configuration Management (CM) provides the activities which are key to orderly release, testing,
problem f'txing and maintenance. The primary components of CM axe identification and control of
software products (and collections of products) and the control of changes to those products. Given
this CM information and adequate back ups, any defined product version can be returned to or

compared against another version.

CM is part of development activities and may be performed by the developers or a non-development
group. CM provides an ord_ly development environment, assistance in probIem resolution during

10
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development or testing, and provides planned, duplicable releases from known components. Poor
CM can contribute to wasted time and effort by ensuring lost components, redundant or lost changes,

difficult integrations, unrepeatable releases of unknown quality, and unacceptable time spent fighting

the development environment and/or the overly strict CM environment.

3.7 Software Reuse

Software Reuse provides an excellent opportunity for improved productivity through higher quality
or lower cost. Reuse of known and tested components can increase reliability and decrease

development time. Reuse can be at the code, design, or concept level. COSMIC, Ames NASABBS
and Ames SOFTLIB are libraries of known components available for reuse. The components come

from a variety of applications and environments. Several larger projects such as the Ames
Standardized Wind Tunnel System (SWTS) and the Aerodynamics Division Research Support

groups have developed their own libraries of commonly used utilities and functions.

The greatest possibilities for reuse of components are within projects or applications of similar types
(similar problem domains). Each development project should become familiar with similar projects'
applications and will search the reuse libraries for reusable components as part of development
activities. Preparation for and conduct of reviews and inspections should include the questions: "Can

this component be reused or can this design reuse an existing component?" In addition, each project
should develop a common library of utility functions which can be reused within the project.
Reusable components will also be submitted to external reuse libraries.

Reuse needs to be planned for and actively managed; it does not happen by accident. There are very
few totally new applications. With care, we can build from and upon already proven components.
While object-oriented development provides a means to better define components and make them
more easily reusable by providing better packaging, each task currently has the .technology for.
effective reuse. However, effective reuse must Ix an active part ot oevelopment plans ano aestgns.

3.8 Software Metrics

It is very difficult to make a vigorous, plausible and job risking defense of an
estimate that is derived by no quantitative method, supported by little data and

certified chiefly by the hunches of the managers.

Fred Brooks, The Mythical Man Month

To estimate with a +10% accuracy, historical data must be accurate to :f.5%

Capers Jones, Applied Software Measurement

Metrics are measurements and numbers collected over time, which can provide valuable indicators of

product and development process quality. One of the precepts of Total Quality Management (TQM)
and Productivity Improvement is that you cannot manage what you can't measure. With the

increased emphasis on improving productivity and quality, measurements of development processes,
productivity and the quality of the products generated are of increasing importance.

Any effort or program to gather project or product measures must have a real.world useful
purpose. Numbers gathered indiscriminately for reportiflg purposes only and without a real-world
use basis can be counterproductive. Any metrics gathering must have staff understanding and be
used in a non-threatening manner to receive their support. Although many numbers and measures

can be gathered, they are just data unless they are put in a meaningful context; then the data becomes
information.
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Many project measures are already available from orderly and planned developments. Some of these
are: initial schedule and work estimates, time spent in various phases, software inspection and review
statistics, product size, and problems reported. More sophisticated use of some of these numbers
include: requirements change frequency to indicate requirements definition effectiveness, problem
detection rate to show the effectiveness of testing or readiness for release, and pre-and post-release
problems and problem detection rate. Grady and Casswell in Software Metrics [GRADY] provide
good information on establishing a realistic metrics program for a project.

Every development project should collect and maintain a record of as many of the following
measures as practical within staffing and budget considerations:

• Estimates of staffing, development phase schedules, and labor hours required.

• Actual calendar start, time and completion dates for phases, when staff added, Engineering
time spent by activity or development phase where time spent and how: meetings, training,
design, code, fix, test. If possible, a further breakdown of time spent allocated to subsystem
or lower level module.

• Some measure of the changes introduced from external or from internal sources and the reason
for the changes.

• Status of Code Modules/Product: inspections held and type, current development status,
design/code reuse.

• Size of and numbers of software units, subsystems, and systems by a quantitative metric.
This should include all delivered and even non-delivered code or product.

• Defect tracking information for pre- and post-release problems: type of error, reason, specific
unit, severity (see Section 5.6, "Problem Reporting"). Individual developers should be
encouraged to keep informal defect metrics for their developed modules prior to integration
where project defect tracking would start.

These basic measures of how much effort is being expended and where, will focus attention on
effective managing, product quality, and productivity of the development process. When examined
over time, this information can provide pointers to effectiveness of estimating, trend information, and
error rates. By identifying early problem areas through review and inspection statistics, continuing
problem areas in implementation and testing Can be predic_ted.

With these measures, comp_on Can be made to existing published metrics such as SPR's Capers
Jones' Productivity metrics (see section 3.8.2 below). These comparisons can provide guidance to
improving the product and development process.

The measures can be informal and not require great effort or large support systems to collect and
retain. They need not even be revealed to higher management. If for nothing else than to apply the
Hawthorne effect (positive attention to staff improves attitude which improves productivity), these
metrics should make development more effective and generate higher quality products than if these
areas are ignored.

3.8.1 Quantitative Metrics for Software ......

To provide the basis for accUratequality and productivi_comparis0ns, metrics must provide
nonambiguous and comistent measures across different deveI_p_n6ht-_aethod61ogies, languages and
implementation environments. Halstead, McCabe, and Function Point metrics can provide some
unambiguous indicators of software program complexity and therefore (from history) a prediction of
problem areas. Lines of code (LOC) can be used as a basis for measuring software if no other
supporting measures are available.

r
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LOC aregenerallynotagoodindicatorof softwareattributes.However,theyaresimple to use and
can be helpful for measuring error rates or other simple ratios ;_a_l._/jg._. They should be
applied consistently within specific areas of a project. They are not dependable between or outside
projects _ the same standard of use is defined and adhered to. Automated LOC and comment
counting utilities are commonly available. Counting LOC is counterproductive for measuring
productivity, especially where reuse or high level development environments are involved.

As programs become more complex they have proven to be more error prone and have higher
maintenance costs. Halstead and McCabe metrics provide an indication of module and program

complexity and thus a pointer to future error prone areas.
Halstead software science metrics (1977) give an indication of program complexity and length
based on the richness of vocabulary. A complexity figure for a section of code is obtained from
the counts of different operands and operators and their frequency of use. Higher counts are
more complex. An analogy is that scientific papers are more complex than the daily newspaper
because the language used is richer in complex terms.

McCabe cyclomatic and essential complexity methods (1976) and numerous refinements provide
a measure of program inter- and intramodule complexity based on the number of logical paths
available. The more logical paths and branching possible, the greater the complexity. It does not
take into account processing or data structure complexity.

Halstead and McCabe metrics are usually supported within automated test coverage tools (tells how

much of a program's code was exercised by test cases). The metrics point out complex sections of
code which may be need to be re-engineered or scheduled for more comprehensive testing. The
metrics are not laws, but indications of areas of potential problems.

Albrecht's Function Points (1979, revised 1984) and many following refinements are based on _e

externally visible aspects of a program such as inputs, outputs, inquiries, logical files, and intertaces.
Function Points (FP) provide a good, language-independent means for measuring software size.
A defined functional capability will have the same FP count whether implemented in Ada, assembly
or C++. FPs provide a standard, reliable and unambiguous means to measure, compare, and
evaluate process and product quality and productivity. Dreger's Function Point Analysis
[DREGER] provides a good description of how to use FPs.

Feature Points extends Albrecht's Function Points to make it applicable to real-time, embedded, and

systems software. The Feature Point extension adds an adjustment factor for complexity in the
problem, code, and data. There are a number of other variations on FPs to allow for different
requirements or complexity scenarios; all seem to come within a 20% variation range.

Object-Oriented Effort Points (OOEPs) were proposed in 1992 by John Connell and Nancy Eller
[CONN92] of Sterling Software to oring unambiguous measurement to object-oriented analysis and
design. OOEPs are a unit of measure of complexity and development effort required for object
classes. OOEPs are determined by assigning values and counting based on the class attributes, the
services or methods provided and how many external entities the object will deliver data to or get data
from. Additionally, more OOEPs are assigned if the object is computationally intensive. OOEPs can
be determined during the object-oriented analysis or design phases and, similar to FPs, can predict
how much implementation effort is required and where special review and test attention is needed.

As of this writing, none of the Function, Feature or Objec.t-Oriented Effort Points are supported by
automated function point counting from code or design, although one commercial vendor of metrics
methodologiers has indicated intent to provide FP counting support from Data Flow Diagrams.

Quantitative measures for software size and complexity provide immediate benefits in analysis and
design phases with:

• a capability of predicting where the errors will be;
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a prediction of actual code size;

an indication of where more review and test attention is needed and the number of test cases

necessary to provide logical coverage;

indications of whether design units are too complex for theft function and should be
redesigned to reduce unnecessary complexity.

3.8.2 Productivity Metrics

Although there are no productivity metrics for Ames, Capers Jones, of Software Productivity
Research, Inc. (SPR), has collected world-wide metric data on over 4000 software projects over
several decades. SPR consults, teaches, and publishes information on productivity and
measurement. Part of SPR's consulting is a thorough examination and evaluation on company
management and development practices, so that metrics information is both extensive and in-depth.
SPR's metrics are probably the most comprehensive of any on which information is published.
Information published from the data includes a full range of productivity metrics and the factors
which affect productivity and quality. Much of this information is available in Jones' 1992 book,
Applied Software Measuremeltl [JONES].

Before any meaningful productivity comparisons can be made, normalized values for the compared
items must be available and historically validated (for the environmen0. This is why measurement
programs require a time history to be effective and are not up and running overnight. Measures of
quality (such as problems per functional unit of code) also require a time history and experience to be
useful. Capers Jones estimates from experience that most measurement data is incomplete and totally
misses 30 to 75% of actual cost and effort. Basing any measurement comparison on industry or
internal numbers requires that both sets of numbers be understood and comparable.
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Section 4

SUPPORTED DEVELOPMENT METHODOLOGIES

This section describes the overall software engineering approach to be used on the CSS contract. It

describes, methods and techniques that are currently approved and supported by the SEPG and that

you are encouraged to employ during software development. A single methodology is not mandated.
The SEPG will support the use of structured, object-oriented, or rapid prototyping approaches as
defined in this section. Developers are free to mix and match components from the following

paragraphs in any way deemed sensible for their tasks. The supported methods are not limited, in
terms of usefulness, to new development or production (non-research) software. Enhancements to or

major adaptations of existing software can also benefit from use of these techniques. Artificial
Intelligence (AI) research support software using fuzzy logic can benefit from use of _ese .
techniques. Using these techniques should enhance productivity, reaucing ramer man increasing
staffing requirements for any size project. Developers are encouraged to contact an SEPG

representative for consultation as to what is sensible for their task.

4.1 Structured Development

If the software developer chooses to apply structured techniques to the software development

process, then the appropriate mapping of techniques to phases in the Development Process Model in

Figure 4.1-1 is as follows:

Phase

Requirements Definition/Analysis Structured Analysis & Inspections

Software Preliminary Design Structured Design & Inspections

Software Detailed Design Structured Design, Structured Testing & Inspections

Implementation Structured Programming, Structured Testing & Inspections

System Integration Structured Testing

Installation & Acceptance Testing Structured Testing

These techniques are described in sections 4.1.1 through 4.1.3.
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Applicable
Structured
Tools

Data Flow Diagrams (DFDs), CASE Tools [
Entity-Relationship Diagrams (ERDs) PState Transition Diagrams (STDs)
Process Specifications
Data Dictionary

Physical DFDs, CASE Tools
ERDs, STI_
Structure Charts

Module Specifications

Fully Attributed ERD, CASE Tools
Detailed Data Dictionary
Pseudo Code or PDL
Program Logic Charts
Execution Path Analysis
Simulation

High Level Language (C, FORTRAN)
Lower CASE Tools

i Modified Sandwich Testing

Independent Testing

Integration Testing and
System Testing
- Structural & Functional
- Proof of Correctness
- Concurrency
- Stress and Performance

- Usability & Interfaces
- IRlot Case
- Regression

Duratio_

Phases

Initiation and I
Concept Definition

Requirements Analysis

Preliminary Design

Detailed Design

Implementation r
. [I

System Integration

I

Installation and

Acceptance

Baseline

Product

Support
and

Software

Maintenance
T

Figure 4.1.1 Structured Development Process Phases and Tools
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4.1.1 Structured Requirements Analysis

The following paragraphs briefly describe tools that can be used to prepare a structured requirements

specification of the software's proposed functionality. The SEPG supports an approach to Structured
Analysis usually referred to as Yourdon/DeMarco as well as an approach to Real-Time Structured
Analysis referred to as Ward/lVlellor. These are probably the most widely used Structured Analysis

approaches, but it is important to note that acceptable variants also exist, such as Gane and Sarcen,
IDEF, SADT, and Hatley-Pirbhai. Several fairly current texts are excellent references for learning

and applying this approach, in particular see [DeMARCO], [McMENN], [WARD], and [YOUR84].

4.1.1.1 Dataflow Diagrams

Dataflow diagrams (DFDs) are a central part of most structured analysis approaches. They represent
a hierarchical decomposition of application system functionality with depictions of data interfaces
between the functional components. Diagramming begins with a context diagrarn_ and pr ,oceeds to

decompose the graphically represented processes in descending level diagrams trom leve_ zero to
level n, where n is a number that varies according to the size of the application being modeled. Level
"n" is referred to as the primitive level; a guideline for determining that the primitive level has been
achieved is: ff the specifications for all processes on this level can be written using at least half a

page, but no more than one full page of structured English. More decomposition than this will cause
the model to become overly complex. Less decomposition will cause individual specifications to
become overly complex. The data interfaces, called dataflows, are all defined in a data dictionary

using a non-ambiguous data dictionary syntax. Dataflow diagrams contain graphic symbols

representing:

• external information sources and destinations (rectangles on context diagram only)

• software processes (circles)

• data flowing from source to destination (directed vectors between extemals, processes,
and data stores)

• data stores (sets of parallel lines)

Figure 4.1-2 is an example of a context diagram and Figure 4.1-3 is an example of a lower level

decomposition of that diagram.

4.1.1.2 Entity-Relationship Diagrams

Entity-relationship diagrams (ERDs) are a part of some structured analysis approaches, for example,
real-time structured analysis (RTSA). They are used to represent the internal data structure of a

complex data store or a set of related data stores. There is not a hierarchy of diagrams as with
dataflow diagrams, but rather single-level diagrams representing a data store as a collection of data
entities and their required relationships. Entity-relationship diagrams contain graphic symbols

representing:

• data entities (rectangles)

• relationships (lines connecting entities)

• cardinality (notations such as 1,m at the end of a line)

Figure 4.1-4 is an example of an entity-relationship diagr_n depicting the structure of the data store

shown in Figure 4.1-3.
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Reporting Problem I

State-Transition Diagram Example

4.1.1.3 State Transition Diagrams

State transition diagrams (STDs) are a part of some structured analysis approaches, for example,
real-time structured analysis (RTSA). They are used to specify the sequence and conditions under
which processes shown on dataflow diagrams will be operative. There is not a hierarchy of diagrams
as with dataflow diagrams. Instead, STDs are packaged with their associated data.flow diagrams by
drawing an icon representing the STD on the dataflow diagram and expanding the STD on its own
page. State transition diagrams contain graphic symbols representing:

• states (rectangles)

• transitions (directed vectors connecting states).

• condition/action (text annotations on vectors)

Figure 4.1-5 is an example of a state transition diagram that could be packaged with the DFD shown
in Figure 4.1-3.
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4.1.1.4 Process Specifications

A process specification is a rigorous, non-ambiguous description of the processing that a primitive
level function (depicted as one of the circles on the lowest level of DFDs) will perform. It specifies

how the process transforms its input dataflows into its output dataflows, outlining whatever data
reduction, combination, or calculation algorithms are to be used. The specification can be in the form
of a bullet list, decision tree, structured English, or pseudo-code. It should be at least half a page, but
no more than one full page in length.

4.1.1.5 Data Dictionary

The data dictionary defines data flows in terms of their constituent data elements and def'mes data
elements in terms of their description. The data dictionary uses a notational syntax consisting of the
following symbols:

w the item to the left is defined as consisting of the components on the right;

• + the two adjoining items are components of the item being defined;

• (x) item x is optional within the dataflow;

• {x} there are multiple occurrences of item x within the dataflow;

• */x/* x is a free form comment or description.

The following is a sample data dictionary dataflow definition:

Duty_Roster = {Guard_Name + Guard_Number + {Harbor_Name + Harbor_Number + Time_In +
Time_Out } }

4.1.1.6 CASE Tools for Structured Analysis

The acronym CASE stands for Computer-Aided Systems Engineering and represents a host of
commercial application software designed to provide automated support for requirements analysis
and design specification. The tools allow the user to draw diagramssuch as those shownabove and
enter associated specifications such as the process specifications and data dictionary definitions
referred to above• Embedded in such tools is knowledge of the methodology(s) being supported so
that users can check models and specifications for consistency with methodology guidelines. This is
a way of getting an automated inspection (see 5.4.1, Inspections). Structured analysis methodologies
are well supported by many CASE tools operating on personal computers and workstations.

4.1.2 Structured Design

The SEPG supports an approach to structured design usually referred to as YourdorgConstantine and
also supports the Ward/Mellor approach to real-time structured design. These are probably the most
widely used structured design approaches. Several fairly current references are excellent for learning
and applying this approach, in particular see [CONST] and [WARD].

4.1.2.1 Physical Dataflow Diagrams_ .......... ==_...... =_; ....._ :

Physical dataflow diagrams provide a means for bridging structured analysis to structured design.
Assuming that the goal of a structured design effort is to represent the proposed software architecture

as a hierarchy of software modules, the graphic representation of this hierarchy might be a structure
chart (see Figure 4.1-6). But how can structured analysis dataflow diagrams be translated into
structure charts?
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A softwaremoduleis anatomic (that is, not divisible) piece of executable software. Structured

design principles say that this unit should be as small as possible; no more than 200 lines of code.
Some projects might set standards for smaller units than this and some projects might allow for larger
units to optimize performance on supercomputers. Physical dataflow diagrams are a way of

organizing these modules into a functional hierarchy that provides functionality equivalent to that
modeled in the analysis phase. Because each primitive process now represents one or more actual
software modules (depending on the size of the modules), some repartitioning is necessary. This
may result in everything below the context dataflow diagram changing. The resulting set of physical

dataflow diagrams is usually referred to as the code organization model.

4.1.2.2 Physical Entity Relationship Diagrams

Whereas the logical Entity Relationship Diagram (ERD) might be a model of the composition of a
data store on a dataflow diagram, the structured design ERD provides a model of an actual database
or related file collections.

4.1.2.3 Structure Charts

Structure charts are a part of all structured design approaches. They are used to specify the actual
software modules in a proposed software application system. Their procedural dependencies, as with
dataflow diagrams, include order of execution, passed parameters, and runtime flags. There is a

hierarchy of diagrams; structure charts contain graphic symbols representing:

• software modules (boxes)

• procedural dependencies (directed vectors connecting modules)

• parameters and flags (labeled mini vectors annotating procedural dependencies)

Figure 4.1-6 is an example of a structure chart.
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Figure 4.1-6 Structure Chart Example
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4.1.2.4 Module Specifications

A module specification is very similar to a process specification, but is associated with a module on a
structure chart rather than a process on a DFD. It is a program level specification and should provide

sufficient detail for coding. -

4.1.2.5 CASE Tools for Structured Design

These are usually a module within a CASE tool that also supports structured analysis.

4.1.3 Structured Programming

Structured Programming was introduced in the mid-1960's and carried forward into most
commercial programming books. For specifics, see almost any book on programming languages.

4.2 Object-Oriented Development

If the software developer chooses to apply object-oriented techniques to the software development
process, then the appropriate mapping of techniques to phases in Figure 4.2-1 is as fonows:

Phase

Requirements Def'mition/Analysis

Software Preliminary Design

Software Detailed Design

Implementation

System Integration

Installation & Acceptance Testing

Ztcdml.au.t

Object-Oriented Analysis & Inspections

Object-Oriented Design & Inspections

Object-Oriented Design, Testing & Inspections

Object-Oriented Programming, Testing & Inspections

Object-Oriented Testing

Object-Oriented Testing

These techniques are described in paragraphs 4.2.1 through 4.2.3.

4.2.1 Object-Oriented Analysis

The SEPG supports an approach to object-oriented analysis usually referred to as Coad/Yourdon. It
is important to note that acceptable variants also exist, such as Schlaer and Mellors' Object-Oriented
Systems Analysis [SCHLAER]. For an excellent reference for learning and applying the
Coad/Yourdon approach, see [COAD-OOA].
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4.2.1.1 Object-Oriented Information Models

The Object-Oriented Information Model is the central model of the Coad/Yourdon object-oriented
analysis approach [COAD-OOA]. It is used to define:

• application object classes;

• attributes of each object class;

• services to be provided by each object class;

• relationships between object classes;

• inheritance structures;

• subject layering (domain analysis).

There is no hierarchical decomposition, other than subject layering, for these diagrams. Each object

class has multiple instances, identified by one or more unique attribute values. (A software object is
an abstraction of a real-world thing of interest to a user-----defined by the object's attributes and

computerized behavior that are of interest to the user.) Objects can be: other systems, devices,
events, document components, persons in roles, procedures, sites, and organizational units. Objects
have attributes that need to be remembered by the system and they require services such as create,
modify, delete, monitor, and calculate. The Object-Oriented Information Model contains graphic
symbols representing:

Figure 4.2-2 is an example of an Object-Oriented Info_afionModel.
2

4.2; i. 2 Object Control Matrices

• object clasps (rounded rectan_gles with the class name at the top)

• class attributes (a list in the middle of each object class) ..... -:_ _

• seNic_ (a list at the bottom of each object c:iass) -_ _ _ _ ...... _ _

• relationships -- called "instance connections" (lines connecting classes)

• cardinality (notations such as i,m at the end of a line)

• inheritance (a semicircle connecting a set of classes to their parent class)

• whole-part structures (a triangle connecting a set of classes to their parent class)

• subject areas (boundary lines around a collection of classes)
z

:::2- :7 i: iz_ ?

An Object Control Matrix (OCM) is not a part the Coad/Yourdon object-oriented analysis approach.
It is described in Object-Oriented Rapid Prototyping [CONN91]. It is used to specify the events

(messages) that will cause specific object classes to provide specified services. The Object Control
Matrix has a row for each object class labeled with the name of the class. The matrix associates each

service with the interception of a message by an object.

Due to the nature of object-oriented environments, messages proceed up the object class inheritance
hierarchies. A message may be sent (by an event such as a user action) to a subclass, but the service
might be provided by a higher level class. Some messages may trigger different services, depending
on the responding object, and some messages may trigger.the same service (for example, create)
from a set of responding objects.

Figure 4.2-3 is an example of an Object Control Matrix.
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4.2.1.3 Object Source/Sink Diagrams

The Object Source/Sink Diagram shows where application data comes from (external sources) and
where data is deLivered to (external destinations) outside the appLication domain. This diagram
provides an initial means for modeling critical appLication objects as the information repositories

necessary for collecting and distributing information to and from external entities.

The object source/sink diagram is not part the Coad/Yourdon object-oriented analysis approach. It is
only recommended here as an aid in getting started with an object-oriented analysis. The analyst will
ask users what data the system must be capable of producing (displays, reports, database and file

updates, device control) and which people, files, and devices are to receive the data. The analyst also
should ask which people, files, and devices the data will be obtained from and what the components
of the data are, then derive a set of problem domain object classes which serve as repositories for the

incoming and/or outgoing data. The objects will be abstractions of real-world things, based on
attributes which match the components of specified dataflows.

The appLication domain within the source/sink diagram can be treated as a black box; given the
specified inputs, the appLication objects can be assumed to contain services capable of providing the
specified outputs. Relationships or instance connections, messages, and services need not be shown
on this diagram. A source or sink can be either a user, a device, or an external data store. A single
external can be both a source for certain dataflows and a sink for others. A single object class may

receive several input dataflows of a particular (related) type.

The source/sink diagram need not be maintained as development progresses; it is only a starting
point. However, it may always be useful to have a specification of the system's mission in terms of
net dataflow. In any case, do not attempt functional decomposition of the object source/sink diagram.
Objects are reusable; the mid-level pieces of a functional decomposition are not.

Object source/sink diagrams contain graphic symbols representing:

• external information sources and destinations (rectangles)

• object classes (rounded rectangles with the class name at the top)

• data flowing from source to destination (directed vectors between externals and internal

Figure 4.2-4 is an example of an object source/sink diagram.
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4.2.1.4 Object State Transition Diagrams

State Transition Diagrams (STDs) are not a required part of the Coad/Yourdon object-oriented

analysis approach, but their OOA text has an excellent explanation of how to apply them in an object-
oriented requirements specification [COAD-OOA]. They are more commonly seen as part of the
Schlaer/Mellor [SCHLAER] object-oriented analysis approach and look exactly like the diagrams by
the same name from the Ward/Mellor real-time structured analysis (RTSA) approach [WARD]. They

may be used in OOA to specify the sequence and conditions under which services of an object class

will operate.

4.2.1.5 Service Specifications

Services containing computational complexity or multiple message handlers will need an additional

program unit graphic model. Coad/Yourdon approach suggests a flow chart in the second edition,
but suggests a data flow diagram fragment in the first edition. Eider is acceptable.

Figure 4.2-5 is an example of a data flow diagram fragment used as a service specification program

unit graphic.
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4.2.1.6 CASE Tools for Object=iOriented Analysis

Any CASE tool supporting Information Modeling and Data Dictionary Management with Process
Modeling can be used effectively. Some examples of such tools include: IDE's Software Through
Pictures, CADRE's Teamwork, Sybase/SQL Solution's Deft, and Popkin's Software Architect. The
tool does not have to specifically support the object-oriented methodology being used. In fact, since

methodologies usually change first, and thenthe tooq-s play catch-up, CASE tools rarely support
methodologies in an exact manner.

4.2.2 Object-Oriented Design

The SEPG supports the Coad/Yourdon approach to object-oriented design. It is important to note that
acceptable variants also exist, such as Schlaer/Meflor. For an exceflent reference to learn and apply
the Coad/Yourdon approach, see [COAD-OOD].

The Coad/Yourdon approach to object-oriented design is basically to build on the OOA models (do
more of the same) with a particular physical implementation in mind. The same models are used to
produce implementation specific representations of the components of the system architecture.

4.2.3 Object-Oriented Programming

Object-oriented programming is done with a language that supports one or more of the following

concepts:

• Message passing - the ability to generate and automatically trap messages from within
services;
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• Inheritance- theability to createnewobjectsbybuildingonthedefinitionof old objects,
with changestotheparentobjectbeingautomaticallyinheritedby thechild;

• Encapsulation- createssoftwareobjects that have everything they need (data and

functions) to provide required services;

• Polymorphism - each object can interpret a given message in its own way.

There are three types of object-oriented programming languages: pure, hybrid, and quasi object-
oriented. Pure object-oriented languages were originally developed as such, and support all the above

concepts. Examples of such languages are Smalltalk, Actor, and Eiffel. Hybrid object-oriented
languages also support all of the above concepts, but do so through extensions to the compiler of a
conventional procedural language such as C or Pascal. Thus, examples of hybrid object-oriented

languages are C++ and Object Pascal. Quasi object-oriented languages only support a subset of the
above concepts. Examples of quasi object-oriented languages include Ada and HyperTalk.

4.3 Evolutionary Rapid Prototyplng Development

Because the term rapid prototyping is subject to so many different definitions and interpretations
(frequently misinterpretations), the SEPG supported definition of rapid prototyping is covered
separately, in paragraph 4.4, "Prototyping." The following paragraphs cover the appropriate tools

for rapid prototyping.

4.3.1 Use of Structured or Object-Oriented Methods

When rapid prototyping is performed on a project, it should be used to augment requirements and
design specifications, not to replace them. Either structured analysis and structured design or object-
oriented analysis and object-oriented design can and should be performed concurrently with

prototype iteration and refinement to produce high quality specifications. The graphic models
described above should be used to specify the initial prototype and then ext_anded along with the

protot _vpe over many iterations based on user feedback from prototype der_aonstrations.

If object-oriented analysis and design are being used, the initial prototype specification will consist of
a source/sink diagram, object-oriented information model, and object control matrix (a three-page
specification). If structured analysis and design are being used, the initial prototype specification
would consist of a context level dataflow diagram, essential functions dataflow diagram, entity-

relationship diagram, and structure chart (a four-page specification). In either case the specification of
the initial prototype should consist of only a fraction of the final product (.perhaps 5 to 20%). This is
to avoid prespecification, since the point of prototyping is to discover reqturements. At the end of
prototype iteration, however, there should be no difference between the quantity and quality of these
specifications and similar specifications produced in a sequential build in a conventional life-cycle.

4.3.2 Very High Level Development Environments

Rapid Prototyping is, by nature, a tool dependent approach. Very high level development
environments are required to ensure successful rapid prototyping. Needed are prototype
development tools that allow for an integrated approach to the prototyping of data structures,
functionality, and user interface requirements. The tools also must allow for the capture and output of
live data with which the user is familiar. These tools must be capable of creating software that will

be just as easy to modify as the analysis specifications. If not, the prototype iteration process will
take too long and the software will become difficult to maintain due to poorly designed modifications
during iterations. The best prototyping tools will allow a user-approved prototype to evolve into an

easy-to-maintain production system.
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If conventionalprogramminglanguagesareusedfor prototyping,it will notbepossibleto rapidly
modify the prototype, based on user feedback, over dozens of iterations, while concurrently refining
and expanding the specifications. Conventional software, written with third generation procedural
languages, is too difficult to modify. High quality prototyping (with adequate specifications resulting
in maintainable code) will not be cost effective with such a language. Examples of poor prototyping
languages include: COBOL, FORTRAN, C, Pascal, Ada, Basic, and Lisp. The object-oriented
extensions to some of these languages, such as C++, ObjectPascal, and CLOS make them acceptable

prototyping environments in certain situations, given robust, heavily populated class libraries.

Good prototyping environments make the prototype as easy to modify as the requirements and
design specifications. To accomplish this, the prototyping environment must include:

• a very high-level (fourth generation or better), declarative, non-procedural programming

language;

• visual programming tools to develop user interface components without coding;

• a flexible data management system where schema changes are easy to accomplish;

• application integration tools to allow execution control without job control language.

Often, such a tool suite can be used for effective prototyping, even if the code has to be completely
rewritten after requirements are discovered and baselined. This throwaway approach is better than
developing a difficult to modify prototype with a conventional programming language.

Figure 4.3.2-1 shows how some current development tools might be evaluated as candidate rapid
prototyping tools in light of these criteria. This is not a complete list, but rather, simply a sample of
representative tools with which a SEPG are familiar and for which, support, in terms of training and
consulting, could be made available to projects. The intent behind providing Figure 4.3.2-1 is not to
endorse or condemn specific products, but rather to illustrate how criteria for rapid prototyping
development environments can be applied to the evaluation of specific commercial products as a part
of task planning. The ratings given in Figure 4.3.2-1 are primarily examples. Each of the categories
presented should be considered, but of course, more may be added for a finer degree of
environment-specific ratings. Evaluations based on hands-on product testing within a specific
environment are recommended.

There are tradeoffs to be considered with any tool. Relational database management systems_
although not originally designed as such, have proven very effective as rapid prototyping tools.
Languages, such as C++, produce very reusable software, but are perhaps not such good
prototyping tools because of their tendency to produce software that is more complex and thus more
difficult to modify than the scripts of a higher level language such as HyperCard's HyperTalk. One
of the most serious difficulties of rapid prototyping is finding excellent rapid prototyping tools that
also produce optimally reusable software. Software produced with expensive proprietary tools is not
as reusable as software produced with commonly available compilers.

Another difficulty in publishing a list of supported rapid prototyping tools is that the list is obsolete
as soon as it is created. There are literally hundreds of such products, and dozens of new ones are

introduced every year. Chances are the ones that were introduced "last week", (ones a SEPG are
probably not aware of yet), are considerably more powerful than any on the following list. The tools
on this list have the following advantages:

• An experience-based evaluation of their merit for prototyping;

• A means to assess the reuse tradeoff;

° A multi-project local user base;

• SEPG will provide some level of support, if appropriate.
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The criteria for including tools on this list are:

• At least two projects locally are using the product;

• The product is being used successfully on at least one local project to support a formalized
approach to structured or object-oriented rapid prototyping as described in this guidebook;

• At least one member of the SEPG is technically familiar with the product or is working

closely with someone locally who is.

Of course, any tool purchased must be selected by a competitive procurement based on project

requirements.

Product (Company)

Sybase (Sybase)

4th Dim. (ACI)

HyperCard (Apple)

Labvlew

(Nat. Instruments)

GUI

Development
Speed

Modifiable
Data
Structure

Function

Development
Speed

Reuse

Rating

Figure 4.3.2-1 SEPG-Supported Rapid Prototyping Development Tools

4.3.3 Reuse in Prototyping

Reuse is the third type of tool useful for rapid prototyping. A software library, filled with reusable
code, is a powerful prototyping tool. Reusing existing code is even faster than development with a
very high level development environment. Effective reuse is, however, subject to the following
conditions:

• limited reusability of conventional, procedural language software programs;

• conscious design for reuse;

• decreased maintainability of modified procedural language code;

• ease of locating reusable components.

The last condition is usually the most difficult, but is possible with good reusable software library
management systems and good help desk staffing. Again, the prototyper should perform preliminary
analysis and design first, then search the reuse libraries for software that matches design
components. If object-oriented analysis and design are used, this task will be easier, and any
resulting developed software will be easier for future developers to reuse.
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Conventional programs will be more difficult to reuse than object-oriented software. Objects are
encapsulated (minimizing the ripple effect of changes), can be extended easily through inheritance,
and are independent of control architecture because of messages and polymorphism. Conventional
programs are built to exist within a specific functional hierarchy and may have difficulty being reused
outside that environment. If such software requires extensive rework, as determined from user
feedback at prototype demonstrations, it is advisable to rewrite the software in a higher level

language before proceeding with prototype iteration. Otherwise, the project will become too
expensive, and the resulting software may not be easy to maintain.

4.4 Prototyping

The following paragraphs define the approach to use when rapid prototyping is selected for a
software development project. The tools to be used when applying this technique are shown in
Figure 4.4-1.
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4.4.1 Purpose and Objectives

Rapid prototyping is a requirements discovery technique. It is useful for discovering valid data,

control, processing, and performance requirements. A rapid prototype usually will not vali_te
requirements; it will tend to demonstrate where prespecified requirements are invalid. Users _

opinions about the validity of requirements implementation, as demonstrated by the prototype, are
incorporated into iterative refinements.

One objective of prototyping is to obtain feedback from users on the appearance of the user interface
and system output. Another objective is to define the detailed requirements for data storage,
processing functionality, and system control architecture. Lower level objectives can include
discovering performance problems and reducing development costs. When structured or object-
oriented rapid prototyping is used as a formal method for developing deliverable software in an
evolutionary manner, development costs can be significantly reduced (e.g., 10%) and overall life-
cycle costs can be dramatically reduced (e.g., 40%) due to reduction of rework during test and

maintenance phases [CONN89].

4.4.2 Products and By-Products

All of the normal products of a conventional software development project are produced during a
rapid prototyping project. There will still be a requirements specification, design document, test plan,
and user's guide. Only the timing of the delivery of these products will be altered by rapid

prototyping.

A small preliminary version of the requirements specification will be produced prior to initial
prototype development. This document will include the design components necessary to build the
initial prototype. When the latest version of the prototype is approved by users, the requirements will
be complete. They can be separated from design components and published as a baseline
requirements specification. The design components, as prototyped, become the preliminary
architectural design specification. A final detailed design specification emerges as the approved

prototype is tuned for performance and evolves into deliverable software.

The user guide can be built from on-line interactive help screens, prototyped to evaluate their
helpfulness. Thus, development of the user's guide should begin during the earliest stage of
prototype development and should be complete at the end of the requirements definition phase of the
project. Likewise, test plans and procedures should be completed during requirements definition.
Each prototype demonstration should be orchestrated by its own mini test plan which amounts to a
script for the demo. The accumulated set of demo scripts for all prototype iterations can then be
distilled into a test procedures document at the end of requirements definition.

4.4.3 Risk Mitigation

Rapid prototyping is the best mitigation technique for the following risks:

• Users may not be able to understand how to use the system without prohibitively expensive

training;

° The system may not provide the information or services needed to support users in their jobs;

• The system may not perform its processing functions correctly;

• Requirements may become obsole_ before they can be implemented;_

• The system "look and feel" may not be attractive enough to lure users away from alternatives
and, therefore, won't get used;

• The system may be excessively expensive to maintain.
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Thereis norisk associatedwith formalizedrapidprototypingwhenit isundertakenusingthekinds
of tools,techniques,andproceduresdescribedhere.

4.4.4 Prototyping Characteristics and Methods

A good prototype should be fully functional (no display-only services) and should incorporate test
data from the user's actual work environment. The user must be able to verify whether prototype

services produce accurate, useful results. This verification must be based on an analysis of familiar
data after transformations have been performed.

Users have much more active involvement in a prototyping project than they do in a conventional

project -- often contributing up to 50% of the total development effort. The rapid prototyper always
takes the approach that the user interface is the most critical part of an application, even if this will not
be the case in the final implementation (for example, embedded software). Even autonomously

functioning software will have a requirements commissioner and this person(s) will be the prototype
user.

A good prototype should be capable of evolving to the final software product. Whether it actually
will or not is another matter, but the prototype should be built with tools that at least allow for this

possibility. If good prototyping tools are used, the prototype will always be as easy to modify as the
analysis and design specifications. The solution to performance problems is deferred until after

requirements definition is finalized.

For the initial prototype, analysis and design specifications are intentionally left incomplete and it is
acceptable ff they are ultimately determined to be incorrect. The preliminary analysis and design for
the initial prototype of even the biggest system should take no more than a month to complete, and
for a medium size system this activity should take about one or two weeks. Building the initial

prototype, using the right tools, will take only about as much time as the specifications development
did.

All life-cycle activities are performed concurrently during the requirements definition, using

prototype iteration. Analysis and design specifications are updated during each iteration. Test
planning is performed prior to each prototype demonstration and the demonstration itself is a test of a

fully integrated prototype.

4.4.5 Analysis and Evaluation of Prototyping Results

A prototype is iterated as many times as necessary until service functionality, data attributes, and
control structures are determined to be correct by the users. The number of iterations is typically

between 12 and 50 depending on application complexity, user difficulty, and efficacy of the

prototyping tool. When users finally approve the prototype, the final requirements document may be

published.

For each iteration, the prototype is demonstrated to users for the purpose of discovering additional

required services, data attributes, and control mechanisms. Existing services, data attributes, and
control mechanisms are evaluated for correctness. Beginning with the second prototype
demonstration, always verify that the problems discovered during the previous demonstration have

been corrected.

Users have distinct responsibilities during prototype iterations including:

• attend regular prototype demonstrations;

• study output to find errors;
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• provideconstructivecriticismandsuggestions;
• identifyadditionalrequirements;

• cooperateto convergeonarequirementssolutionwithin scheduleandbudget.

If user'swon't committo this levelof participation,rapidprototypingmaynotbeadvisable.An
alternateis to haveotherpeoplepretendto beusersandtaketheuser'spointof view, but thiswill not
beassatisfactoryasrealuserinvolvement.

Development should not continue past prototype iteration until users have expressly approved
prototype correctness, completeness, and exactness. At this point, documentation should provide
everything needed for conventional software maintenance. An inspection team, staffed by
maintenance personnel, should verify that this is true. Existing performance problems should be well

documented and preliminary performance requirements specified. Performance problem solutions are
developed after the requirements def'mition is complete.

4.5 Tools not Specific to a Methodology

TBD.

4.5.1 Program Design Languages

TBD.

4.5.2 Performance Thread Analysis

TBD.

4.5.3 Hardware/Software Architecture Models

TBD.
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Section 5

ASSURANCE

5.1 Overview

A software error is present when the software does not do what the user reasonably
expects it to do. A software failure is an occurrence of a software error. Glenford
Meyers, Software Reliability, 1976 [MEYER]

Assurance is a blend of activities performed throughout the development life-cycle to ensure the
creation of correct and appropriate products that accomplish desired results. To be most effective,
assurance activities must be an integral part of the development; they cannot be done only at the end
of development. Assurance responsibilities span several subgroups of the development effort such
as the developers, development management, the customer, and (possibly independen0 quality
assurance or test groups.

Several major activities compose the assurance area: Risk Analysis, Quality Assurance (QA),
Verification and Validation (V&V), and Problem Reporting. Risk Analysis is identifying and
analyzing factors that can jeopardize the success of the project or product's use. QA is establishing
and enforcing conformance to standards, procedures, and plans. Verification is ensuring that
requirements and objectives of the product are correct, complete and that throughout the life-cycle,
each development step builds upon and implements what was developed or required in the previous
step, "the product was built right". Validation is checking to ensure the product satisfies the
requirements, "the right product was built". Problem Reporting is the mechanism for reporting and
tracking resolution of errors and problems. Problem reporting is closely related to configuration
management. This section addresses the above assurance activities.

Two additional areas of assurance are Quality Engineering (QE) and Quality Audits. Quality
Engineering ensures that metric quality indicators (such as reliability and maintainability factors) are
set as product requirements and met by the development. Further QE responsibilities are to examine
and analyze project metrics and utilize the information to improve the project, product and process
procedures. Quality audits are reviews to ensure that standards, processes, and procedures are
followed and effective. Audits are described in the Software Quality Assurance Audits Guidebook,
see [SQAG]. Quality engineering and audits are not discussed further in this guidebook.

Assurance has two primary concerns in achieving the goal of producing correctly functioning,
appropriate products for a customer. These are the "engineering in" of quality (goodness) and to find
and remove errors (evil). All assurance activities (and all development activities) are oriented toward
achieving the goal and satisfying these concerns.

The most cost effective and efficient methods for finding and removing errors in top-down sequential
development are technical reviews and Formal Inspections. The primary cost saving is in finding
and fixing errors early in the development, which prevents error compounding. Prototyping holds
the possibility for even greater cost savings due to the increased user involvement and discovery of
the true requirements early on. Whichever assurance and development approaches are selected,
emphasis should be on early definition of accurate requirements and early detection of errors of both
omission and commission.
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Thecontentsof thissectionareorganizedasfollows:

• Risk Analysis - identifies risk factors and measures to reduce risk.

• Standards and Guidelines - set and measure conformance to standards for processes and

products.

• Reviews - are human-based examination of products for adherence to standards,

requirements, and other factors. Reviews are a mechanism used by both QA and V&V to

achieve their goals.

• Testing - is machine and human-based exercise of the product for requirements satisfaction,
ease of use, and error detection. Testing is primarily a V&V activity.

• Problem Reporting - is recording errors and ensuring that they are repaired.

5.2 Risk Analysis and Management

Risk analysis is a management activity used to identify factors which can jeopardize the success of
the project (or can result from the use, misuse or failure of the product) and an estimation of the cost
of that failure. Based on the risk factors and their importance, actions must be taken to reduce or

mitigate the risk. Risks to any development are the required product rework, decreased operational
capability or the increased operational cost due to errors from improper development methods and/or
inadequate assurance and management methods. This guidebook provides several supported
methods which can help reduce some of the development risks for a software project.

Both NASA Headquarters and Ames require that software development (or acquisition) projects be
classified by their risk factors and that management address those risks through appropriate
management, assurance, and documentation activities. The diagram below is taken from Ames
Handbook (AHB) 5333.1, Establishment of Software Assurance Programs, and provides a matrix
from which to determine a project's risk level. For a project's overall risk level (from Minimum to

High), AHB 5333.1 also describes required Management Plan sections, documents to be delivered,
and specific assurance reviews which must be held. Use of the Risk Assessment Matrix is described
in AHB 5333.1.

_Project Risk
Factor

Human

Veliicie/

Facility
Software

Acquisition
Cost

Technology

Visibility

1. HIGH

Death

Total
Loss

>$20.0M

Complex/
Leading

Edge
International

Visibility

Ames Risk Categories
2. MEDIUM

SevereInjur,/
Major

Damage

$2.5M - 20.0M

Complex/
State-of-
the-Art

National

Visibility

3. LOW

Minor Injury
Moddate

Dama_

$100K- 2.5M

Complex/
State-of-

the-Practice

Agency

Visibilit),

4. MINII_UM

Mental Stress

Minor

Damage

$25K- 100K

Simple/
State-of-
the-Practice

Center

Visibility

Figure 5.2.1 Ames Risk Level Assessment Matrix
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AHB 5333.1wasproducedreferencingtheSMAP4.3documentationstandards.Thefigure5.2-2
mapstheAHB referenceddocumentsto thecurrentNASA-STD-2100-91NotethattheUnit
DevelopmentFolder(UDF) is notdescribedor definedasaDID by thecurrentstandards.

Muchsoftwareproducedin thesmallandmediumsizeNASA researchprojectsfall into the
Minimumrisk category.By AHB 5333.1,for aMinimumriskproject,at leastthefollowing actions
mustbetaken:

• ProduceaManagementPlan,aSoftwareRequirementsSpecification,aVersion
DescriptionDocument,anda SoftwareUser'sGuide. NASA-STD-2100-91

Software Documentation Standards [DOCSTD] provides an outline for these
documents. The Unit Development Folder contents should be included as part of the

design documentation ....

• Hold a Requirements Review of the requirements document and an Operational
Readiness Review of the test results.

The risk category and the management approach used will determine the assurance activities needed
and required for the project. Although the following sections describe assurance activities and
responsibilities, the initial determination of the appropriate assurance activities is a combined

management and assurance responsibility.
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Figure 5.2-2 AHB-5333.1 Documents to NASA-STD-2100 Mapping
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5.3 Standards and Guidelines

Standards and Guidelines provide the ideal to which a product or process is compared. Guidelines
provide a hopeful comparison point but standards are required to be met. Various NASA contractors

have produced a number of guideline documents to help developers and managers utilize better
processes or to help understand and apply NASA standards.

This Guidebook (Software Engineering Guidebook, 1993), provides SEPG approved and supported
process and activity guidelines for software development, assurance and configuration management.

NASA Guidebooks described below cover a variety of subjects and are mostly in draft form. The

guidebooks provide suggestions and guidance in practical application of NASA standards to projects.
Some of the guidebooks address the previous NASA life-cycle and documentation standards
[SMAP4.3] while others have been prepared to address the current Documentation Standards
[DOCSTD]. However, the essential information is consistent and correct.

Software Assurance Guidebook SMAP-GB-A201, September 1989, [SAG] describes various

assurance activities as applicable to NASA developments. This guidebook provides a more
detailed and formal description of assurance activities than the section you are currently reading.

Software Formal Inspections Guidebook (Draft), 1990, [SFIG] describes the Inspections
process, roles and activities and provides pointers for establishing an Inspections program..

Software Formal Reviews Guidebook (Draft), 1990, [SFRG] describes formal reviews
(including Phase transition reviews) held between the producer and acquirer of software
products.

Software Quality Assurance Audits Guidebook (Draft), June 1990, [SQAG] describes audits to
check processes against standards, products against requirements, or activity against schedule.

Understanding and Tailoring the NASA Software Documentation Standard (draft), May 1992,
[SEI92] explains how to tailor and use the documentation standards, including roll-in and roll-
out.

Software Management Plan Guidebook (Draft), May 1992, [SMPG] describes how to meet the
Documentation Standards requirement for a management plan, what to include, and how to
develop it.

The following standards are applicable to every development project. NASA standards typically
contain a clause that says the Program Manager should adapt (or tailor) the standards to their
particular project.

NASA Software Engineering and Quality Assurance Standard, DS-XXXX (draft) December
1991, [SWASTD] provides assurance requirements.

NASA Software Documentation Standard, NASA-STD-2100-91, July 1991, [DOCSTD]
establishes standard format and content for document deliverables generated during software
development or acquisition. The specific document formats are called Data Item Descriptions,
known as DIDs.

NASA Software Inspection Process Standard, NASA-STD-XXXX (Draft), March 1992,
[SWlSTD] describes standards for holding and using Software Formal Inspections.
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AHB 5333.1 Establishment of Software Assurance Programs, June 1992, [AHB] provides the

Ames local implementation of NASA requirements, see [NMI] for categorizing software risk and

setting minimum requirements for documentation, management, and assurance to mitigate that
risk.

FIPS (Federal Information Processing Standards) and FED-STDs provide a series of

government-wide standards for ADP, telecommunications equipment, services, related software
requirements (including languages) and terminology related to these areas. Many FlUS and FED-
STDs are "pass-through" requirements which adopt IEEE or ANSI industry-wide standards as

the government standard. Projects which are not covered by Ames, company or other standards
or are implementing technology not covered by locally available standards should adopt

appropriate FIPS.

Programming Standards which should be adopted for every project and can be obtained from

your company, NASA site, ANSI standard or a commercial source and customized for your

specific project.

5.4 Reviews

Reviews are human-based examinations to fred problems and deficiencies of software products and

processes. Reviews work best when there are standards for content and preparation for the product
being. Several types of reviews are available, depending on the review objectives: Software
Inspections are peer technical reviews not led by the author of the product being inspected;
walkthroughs are reviews generally led by the author; formal reviews are usually a combined
contractor/acquirer management review of products, processes, or end-of-phase schedule and

progress determination.

Although the review techniques may differ, the primary objective is common: f'md problems so they
can be removed. Other objectives are more functionally oriented depending on the review purpose
and the reviewer's purpose; a QA organization will have different objectives from the developers,
testers and the Quality Engineering staff. Though differing objectives may be realized in a review
there are common minimum requirements to any effective review. These are:

• Standards of comparison for the product should exist (such as programming standards,

design representation, and maximum errors per unit) and the standards should be met or
exceeded before the material passes that review.

• The level of preparation should be defined and the material properly prepared to that level.

• Review material should be provided to the reviewers prior to the meeting so they can prepare
and be familiar with the material. The review should not take place unless all reviewers are

prepared.

• Reviewers should be selected who are qualified to contribute. A breadth of reviewers (such

as manager, user, implementer, maintainer, tester) should provide different points of view in

the review.

A facilitator should conduct the review flow and maintain the focus.

The review should be non-threatening to encourage free discussion and revealing of
weaknesses that might not be discovered in a hostile environment. The primary purpose is to
find errors in the materials reviewed and not in the author of the materials.

Detected errors should be recorded and fixed prior to proceeding with development.
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Reviewsaregenerallyaseffectiveasandmorecosteffectivethantesting for finding errors and

removing them. Early reviews to find errors can be greater than 10 times more cost effective than
testing because errors detected early and removed are not compounded (e.g., wrong design and
im lementation following from incorrect specification). Reviews can also check quality factors

_ting maintenance and reliability, while testing can only detect errors or prove the product works
under certain preplanned conditions, not necessarily those under which it will operate. Thoroughly
reviewed software products can also show a five fold reduction in maintenance costs, see [BEIZ84].

Though reviews are more cost effective for removing errors, testing is still mandatory because
reviews do not remove all errors. Structured walkthroughs can remove up to 50% and Formal

Inspections up to 65% of specification and design errors, see [JONES]. This still leaves up to half

of the expected errors in the product.

Reviews should be an integral part of the development process and should be planned for as part of a

development schedule. Reviews should be used in conjunction with testing; neither is a substitute
for the other. When reviews are held at known points in a development life cycle, the review will

provide product quality information (known errors and deficiencies) and quantitative progress
information--product measured against where it is planned to be at that point.

5.4.1 Software Inspections

Software Inspections are a formalized, non-threatening error finding process conducted as peer
reviews, where management is not present. The Inspection is led by a moderator and someone other
than the author presents the material. Checklists of questions about common problem areas are used

to guide the Inspection. Errors are recorded and the Inspection is not complete until the errors are
resolved (outside of the Inspection meeting). Various statistics including meeting times, type of
errors detected, and error rates are captured and used to improve the Inspection and development

process.

The Inspections Process Standard is described in [SIPSTD] and a guidebook [SFIG] provides more
information on Inspections usage. The NASA Software Assurance Standards (Draft) also sets

Inspections as the review standard.

The SEPG supports Software Formal Inspections through training and by providing Inspections
forms, entrance criteria and checklists as part of the Inspections class notes and in electronic format

for the Macintosh.

5.4.2 Walkthroughs

A walkthrough can be any group examination of product material. It usually means the author steps
or "walks" others through the product and explains what is (or is supposed to be) there. A

specialized walkthrough or a "structured wallahrough" developed by Ed Yourdon is essentially a less
formal Inspection. The structured walkthrough does not use checklists or keep statistics as does an

Inspection.

Walkthroughs are useful for presenting overviews and material for familiarizing or synchronizing

project staff simultaneously. A disadvantage of author-led reviews is that more than the actual
material may get presented (design on the fly). For technical reviews of material, someone other than

the author should paraphrase and present the material.

Structured walkthroughs are described in Structured Walkthroughs, see [YOUR83]. The philosophy

and conduct for keep types of reviews is well described in the Handbook of Walkthroughs,

Inspections and Technical Reviews, see [FREED].
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5.4.3 Code Reviews

Code reviews are a form of non-executable testing. There are two basic types of code reviews: code
walkthrough (which can be conducted as an Inspection) and code reading by stepwise refinement.
Both types of reviews require prespecification (requirements or design specification) and the code
must be cleanly compiled and successfully linked. A code walkthrough examines the code for

coding errors, language errors, failure to meet standards, and incorrect implementation of the design.
The latter requires that a well specified design be available.

A special type of code walkthrough, code reading by stepwise abstraction, has proven to be at least

(ff not more) effective than functional or structural testing at finding interface errors, see [BASILY].
In this study, the code readers were also able to more accurately estimate the percentage of problems
detected. Code reading is performed by examining the application's subsystems or components code
to determine their functions. By adding the component's functions the reader determines the function

of the entire application. This function is then compared against the intended functionality of the
requirements specification; the differences are errors. This review method requires that a good
specification be available for comparison.

5.4.4 Formal Reviews

Formal reviews are project level presentations by the producer to the acquirer of interim products to
determine if requirements and specifications are met, to identify problems, and to decide whether
trade-offs need to be made. Phase transition reviews are specific formal reviews to decide whether to

proceed to the next phase of development. Although formal reviews can be technical reviews,
usually technical review results are input to the formal review process. Some attributes of formal

reviews are that the review results are written as a report, they are often specifically and contractually
defined, and they are usually by both the producer and the acquirer. Usually the reviewed material is
baselined after review corrections are made and approved and put under CM control.

Formal reviews need not be formidable as long as the review purpose is achieved. For a small

minimal risk project, the attendees can be the task requester, task manager and/or a singleproduct
developer. NASA Formal Reviews are described in a NASA Software Formal Reviews Guidebook
(draft), see [SFRG].

5.5 Testing

5.5.1 Overview

Testing is the operation of the software with real or simulated inputs to demonstrate
that a product satisfies its requirements and, if it does not, to identify the specific
differences between the expected and actual results.

NASA Software Assurance Guidebook. [SAG].

Testing is the final phase of development that demonstrates product suitability and attempts to fred
and remove those errors not detected earlier. Although reviews are more cost effective in identifying
and removing problems early in the development, they only remove half to two thirds of the resident

errors. Usually they only remove about a third of resident defects, see [JONES]. Testing itself
produces limited results; it does not guarantee a good productmtesting only reduces "badness" by
identifying errors to be removed or proving some aspect of performance that is specifically tested.

Testing can provide three measures for a product:

• That the product performs desired functions and performance

• That it doesn't perform unwanted functions
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• An apparentqualityindicatorbasedonerrorsdetectedanderrordetectionrate.

Testingcanoccurat fourdifferentlevelsoverthedevelopmentof theproduct:unit,subsystems,
integrationtesting,andsystemstesting.Eachlevelof testinghasspecificobjectives,withdifferent
developmentgroupshavingdifferingresponsibilities(unlessthedevelopmentis by a single person.)
Although walkthrough reviews of requirements, design, and code could be considered testing
through simulation, they are addressed in section 5.4. Testing execution usually begins at the lowest
level code unit and is generally done in isolation by the individual developer. As code units are
assembled, integration testing continues to check increased functionality of the unit collections,
subsystems, and eventually the system. Final testing is usually the Acceptance Test, a formal

milestone. During the testing, all discovered errors should be recorded informally or formally
depending on the test level and repaired with suitable design, review, and configuration control.
After error repair, all tests at that level, and perhaps lower levels, should be run again until no errors
are detected.

Test software and data should be planned and designed to be reusable and available for retesting or
regression testing the application. As much as possible and practical (and appropriate for the
development cost), tests should be assembled into modular components (test suites) paralleling the
soft_,, are tested. The suites should be capable of running under a test harness or driver so that testing
consistency can be controlled. Sets of test data should also be accumulated and designed to test or
prove desired capabilities.

Test and test product development is best done in parallel to product development. If an independent
test team is used, they will depend on the information in product requirements and design materials
for test development. An independent test team will also act as an additional assurance method,
providing an important alternate viewpoint as they gather information to develop the test material.

Whether done by an independent group or as part of the development group, testing development
must be planned, scheduled, and designed with test products reviewed for validity and quality.

Boris Beizer has written two excellent books covering detailed high- and low-level testing
approaches: Software Testing Techniques [BEIZ83] and Software System Testing and Quality
Assurance [BEIZ84]. The books contain accessible and practical testing methods and approaches
and are very usable for a reference or direct usage on any project.

5.5.2 Management Considerations for Testing

5.5.2.1 Factors Affecting Test Effort

The degree of testing rigorousness, amount of testing, and general approach should be determined at

project startup. Numerous factors affect the test effort and approach. Among these are: project risk
factors, software life expectancy, project size and staffing, development approach, and type of
software developed. All of these factors are interrelated and affect the entire project and the
development approach, of which testing is only one aspect.

The level of testing effort needed can be estimated similarly to other development efforts and costs.

Testing development generates designs, code, test data, and documentation and should run parallel to
product development. Test development products (designs and test case coverage) should also be
reviewed or Inspected. Capers Jones, of Software Productivity Research, reports that, on the
average, test effort consumes 15% of project costs, regardless of project size.

According to Barry [BOEHM], the primary technical risk areas are generally: developing the wrong
functions; developing the wrong user interface; and developing unnecessary functionality.
Determining the project's risk factors (management and technical) will shape the project approach,
including the level of assurance and test efforts. The testing effort should pay special attention to the
higher risk or critical areas to ensure error prevention and proper operation.
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Projectsize,staffing,and(unfortunately)scheduleoftendeterminethelevelof effortwhichcanbe
devotedto testing.Contractuallimits maydictatethatonly acertainlevelof effort beexpendedon
testing.Theallowedlevelof effortmayor maynotbeappropriatefor the levelneeded.If aproject
is significantlyunderstaffedoneitherdevelopmentor assuranceefforts,therisk risessignificantly.

Softwarelife expectancyalsodeterminesthetestingeffort. A one-time-useor short-livedproduct
maynotneedextensivetestingunlessthecostof errorsby anymeasureduringthatusageis high.
A longer-livedproductwhichwill beenhancedandsupportedshouldhavesufficientplanningand
effort to build apropertestframeworkwhichcanbereusedandeasilyamendedfor future
enhancementandregressiontesting.

Theoverallguidingprinciplefor testing(andassurance)is to preventcostlyreworkanderrors.The
highertherisk, possiblecostof rework,erroror failure,themoretimeandeffort shouldbe
expendedin preventingerrors.

5.5.2.2 Assurance Plan and Test Plan Elements

The overall assurance al_ll_g.Cdllg_ plan and approach should be described in the Assurance Section

of the Management Plan. This will include specific activities as Work Breakdown Structure (WBS)
test activities to develop, execute and evaluate test results. The WBS items should include estimates
of effort and should be scheduled. Any tools developed should also be included, along with specific

staff assignments and responsibilities. Any tools purchased should include activities for
requirements specification and procurement lead and competitive acquisition.

Test planning approach should include as much automated support as practical, whether by
purchased test tools or by built and/or reused test drivers. The Test Plan should lay out the various
levels of testing from unit through acceptance testing and describe the types of testing to be used at
each level. The plan should link all the tests from all the levels into an integrated approach that makes
maximum use of all tests and test data sets. If possible, real world data should be used for some of

the tests, especially those that may establish a known functional or performance baseline.

The specific _ approaches and procedures should be described in a Test Procedures document
(NASA-DID-A200) [DOCSTD]. If the project is large, and a significant assurance and test effort
will be supported, the specific technical procedures and activity descriptions should be described in
an Assurance and Test Procedures document (NASA-DID-A000) [DOCSTD], of which the specific

test descriptions can be an integral part or roiled out into the Test Procedures described above.

Adequate testing depends on an accurate and complete set of requirements and design. Testing

developed from requirements validates the product against functionality that should have been
developed. Testing developed from design verifies that the product logically works as intended.
Testing developed from only code reduces the test effort to manual testing or automated test
instrumenting after the product is developed; this inefficiency raises the cost to repair errors, many of
which will be discovered only after the product is in use.

5.5.2.3 Coverage - How much is enough?

There is no "rule of thumb" about how much testing is enough--each situation depends on the

development methods, testing approach, size, type, and eventual usage of the software. In an ad hoc
development, testing ends when resources, schedule, or ifiterest wanes. In a managed and
engineered development, testing should be specifically targeted to the highest risk and error prone
areas and its effectiveness measured by error detection rates and test coverage.

Mathematical proofs and common sense indicate that any significant program cannot have all paths

and input value possibilities tested without expending an inordinate amount of time and resources.
Knowing that all tests can't be performed allows testing to be oriented to the highest return.
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At aminimum,thecriticalfunctional capabilities (functional testing), primary control and program

flow operations (structural tests), and user interfaces of the software should be tested. Usability

testing (ease of use) of features such as installation, error handling and documentation correctness,
and consistency with the software should be performed. These tests axe the absolute minimum

necessary prior to release.

Besides selecting appropriate coverage of functional and structural testing, there are many

quantitative and qualitative metrics which indicate software quality and testing effectiveness.
Halstead, McCabe and Function Point metrics can provide some indicators of program complexity
and therefore (from history) a prediction of existing probable errors. These software metrics and

their usage are discussed in Section 3.8, Metrics.

Error detection rates, def'med as errors detected per test case completed, can provide a good
indication of software stability, assuming an active and effective testing phase. Discovered errors

usually decline in an asymptotic curve to a consistent (acceptable) level of errors detected. The
acceptable error rates are a management and engineering decision dependent on the type and use of
the product. If error detection rates rise over time or remain at an unacceptably high rate, the
software is not ready for release. In this case, the development method and the essential design

should be examined and significantly improved.

Capers Jones suggests that for any specific type of project, given the other factors such as software
type and staffing level, the number of errors which inhabit software before testing and after (residual
errors) can be predicted. If adequate testing "finds" the predicted number of errors, the product may

be ready for release [JONES].

5.5.3 Testing Levels

Testing is usually performed at one of three levels: unit testing is done on the lowest level of code
units; integration testing is on intermediate levels of connected collections of units into subsystems
and system testing is done on the completely integrated system. Each higher testing level is oriented
to proving that the product's integrated parts work as a unit and to f'mding errors that escaped earlier

tests.

5.5.3.1 Unit Tests

Unit level testing is the lowest test level, usually done by programmers on their own code or, ideally,

by peers on each other's units. A unit is generally the smallest functional component of code that
does something useful. A unit may be a subroutine, a function, a file, a database input screen, or
some other collection of code usually produced by one programmer.

Unit testing usually occurs first, as most software problems are partitioned into numerous smaller

components and developed piecewise. As those components are implemented in code, their correct
implementation from design and function should be proven through testing in isolation from the rest
of the system. (It is quite possible to only test all components together in a "big bang" integration;
however this is not recommended.) Unit tests provide the foundation of confidence that the essential

components of the subsystems and system are reasonably sound, demonstrate internally consistent
behavior, and meet stand-alone expectations.

Unit testing is primarily oriented to structural testing (unif internal logic and data handling) in
isolation from other units. Testing should exercise the following elements of the component:

logic structures and paths;

data handling including initialization, correct and incorrect input acceptance, output generation,

data storage and conversions among others;
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• computation including correcmess and accuracy of computational algorithms.

Unit testing is usually done under the control of a software "driver" that simulates the program which
would usually invoke or surround the unit. The driver should have the capability to provide and
change inputs that will test the unit's internal and external behavior. The test driver and any sets of
test data should be kept for reuse, as unit tests are likely to be rerun numerous times and in various
combinations in support of higher level tests.

5.5.3.2 Integration Testing

Subsystems integration testing determines whether related collections of units connected (integrated)
will function together and satisfy expectations. There may be multiple levels of integration and
subsequent integration testing depending on the development model and design partitioning. The
highest level of integration testing is the system level tests discussed in the next subsection.

Assuming that unit tests have provided confidence in the isolated units then integration testing checks
the interdependencies of units working together as functional entities. The emphasis is on interface

matching and unit interactions. The integration into subsystems provides opportunities for testing
functional capabilities and performance requirements.

5.5.3.3 System and Acceptance Testing

System testing is the highest level of integration testing, in which all sulx:omponents are assembled
and tested. The emphasis is on demonstrating functional capabilities and satisfaction of
requirements. As with general integration testing, effective system testing depends on lower level
testing to have already removed internal unit errors and interactions between integrated units
(subsystems). This is the last opportunity to discover and fix errors prior to formal customer
participation in testing.

Acceptance testing is usually the last phase of development and testing. Acceptance testing starts the
formal turnover of the product to the customer prior to delivery. Acceptance testing and results are
often a contract deliverable, usually with the customer in attendance or in review of the test results.

5.5.4 Testing Approaches

Testing approaches for hierarchical systems will generally mirror the development's implementation
approach. The most common approaches are top-down vs. bottom-up and phased vs. incremental.

Each approach has advantages and disadvantages and seldom does any development use only one
approach.

A top-down approach develops and tests the highest and usually most visible components first and
proceeds to build and test components at progressively lower levels Top-down develot_ment

requires "stubs" to simulate the components not yet developed. A bottom-up approach _levelops the
lower levels first and combines them until a complete system is assembled and tested. Bottom-up
development requires software "drivers" to simulate the as yet undeveloped higher control structures.
Yourdon and Constantine favor a top-down approach, primarily because users, managers, and
programmers are pleased to see early preliminary (but not complete) versions of the product. An
argument against a purely top-down approach for the case in which critical risky sections are at the
bottom (or las0 in the development schedule; in this case these portions should be demonstrated as
early as possible.

A phased approach develops and assembles a group of components into a larger functional whole.
An incremental approach is similar, except that additions are added one at a time. The incremental
approach allows errors to be more easily isolated and fixed.
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5.5.5 Testing Methods

Regardless of the testing level or approach, specific test methods must be applied to detect errors or
demonstrate functionality in software. The following methods are generally applicable to most

software levels and testing approaches, although some of the methods are more applicable to specific
levels or approaches (e.g., pilot case testing is applicable primarily to system level testing).

5.5.5.1 Functional Testing (Black Box)

Functional testing exercises the interfaces and the external responses of the component (or system) to
ensure requirements or expectations are met. Functional testing treats the component as though no
knowledge of the internal logic or structure is available, and relies on the functional description of
what it is supposed to do. System level and acceptance testing primarily use this testing method,
although it is applicable to all testing levels and approaches.

Adequate coverage for black box testing includes selection of test inputs or stimulus for all functional
capabilities and should address a range of behavior such as:

• normal use of the function

• abnormal but reasonable use of the function

• abnormal and unreasonable use of the function

If possible, the user should be involved in generating the expected answers and results from the test

cases. The use of real-world data and comparison of validated results from an existing application
provides a productivity improvement opportunity.

The production of a preliminary User Guide early in a development can be a form of functional

testing that can help discover user concepts and expectations of the system's appearance and

capabilities. The user guide only deals with the interfaces: inputs, outputs, and visible response of
the system.

5.5.5.2 Structural (Glass Box) Testing

Structural testing exercises the internal logic, paths, behavior and algorithms to ensure correct

implementation of the design. Structural testing is based on a design knowledge of internals of the

system or component. Test inputs and stimuli are selected specifically to exercise and find problems
in the logic paths, intermodule interfaces, and shared and passed data structures.

Structured Testing is a specific methodology that was developed by T. J. McCabe (of McCabe
Complexity metrics) in the mid-1980s. Complexity analysis module ratings and the charts of module

structure, branches and logical paths are used to generate tests to exercise the main logic paths in a

program. Part of the testing is "instrumenting" the software with a testing tool to record which paths
have been traversed during the test cases. Test cases to exercise untraversed paths are added to the
test plan and the tests are rerun until coverage is satisfactory.

A drawback with structural testing is that it is usually impossible or not practical to test all possible
inputs and paths for a real world problem. Additionally, glass box testing cannot define needed
elements that are missing, as it only tests what does exist..

5.5.5.3 Proof of Correctness Testing

Correctness proofs are mathematically-based deductions, formed from logic theory. The system or
product requirements are stated in a formal mathematical language. Then, for possible inputs the

requirements statements are logically examined to see if correct outputs will be produced. According
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to Beizer [BEIZ84], the limitations are that there is no assurance that the specification is correct, that

the proofs are expensive, and that there is, generally, limited applicability.

Commercial equation checkers, such as MACSYMA and Mathmatica, which will verify an equation
in symbolic language and generate FORTRAN, C, or other code to implement the equation, are
available.

5.5.5.4 Concurrency Testing

Concurrency testing is used to check a system's ability to support simultaneous activities against
shared or common resources. For concurrency testing in database technology, record and data

locking are tested to ensure data integrity for multiple simultaneous access. Two conditions to test
are: avoidance of deadly embrace (deadlock--where multiple processes are "stuck" awaiting each
other' s response) and proper operation of queuing and wait states response. Stress testing support
and multiple access simulation may be necessary to provide a sufficiently overloaded environment
where possible contention of resources may occur.

5.5.5.5 Stress and Performance Testing

Stress testing is used to help detect problems associated with load, performance, and resource
constraints. Stress testing is not correcmess testing, but oriented to discovering at what level the

product breaks. Capabilities required for stress testing are simulated or actual system overloading
beyond normal operational limits which can cause contention for system resources. Stress testing
usually simulates the peak loading expected and then continues to add loading or remove resources
until the system seriously degrades or breaks. Automated test tools can help greatly in simulating
user and other types of loading.

Performance testing is done to 1) demonstrate that system performance meets specifications, 2) tune
the system, 3) determine performance limiting factors, and/or 4) project future system load-carrying
capability, [BEIZ84]. Performance testing requires a relatively error-free system so that the
performance problems can be isolated from functionality and implementation problems. Effective
performance testing requires that performance objectives be well specified (and realistic), the system
(hardware and software) be operational, all system parameters and loads be controlled, and variables
should be changed (and changes measured) one at a time.

For system tuning, performance limiting factors should be eliminated or modified to achieve a
required performance within given constraints. Stress and Performance testing with system tuning
can be done repeatedly, back to back, until optimal conditions are achieved.

5.5.5.6 Usability Testing

Usability testing is performed to evaluate ease of use. It is specifically user oriented testing, usually
by a person unfamiliar with the product. Pilot case testing, described below, is a mechanism to
evaluate usability. Specific areas to address include: ease of installation, documentation,
consistency, misunderstandings, changes r_uired to other programs_ and/_or sys_ms,__d.accessto,,,
support. If possible, real users in actual envu'onments provloe me oest usaomty te_unt_ _lv,_v_,_,_,l,.

Under the current productivity, quality, and TQM initiatives, usability testing and customer
satisfaction is assuming even more importance. Involving the user as early as possible through rapid
prototyping for discovering the real requirements, paying attention to human factors, and listening to
the more subjective user preferences should pay off in higher customer satisfaction.

50



5.5.5.7 Regression Testing

Regression testing is used to ensure that any change to the product has not introduced "side effects"

or unanticipated changes. Regression testing runs previously proven tests, test software, and test
data against existing product capabilities to generate test results that can be compared to previous
results. Use of automatic test runners with results comparison capability and file comparator
products make the testing effort more productive and accurate.

Regression tests are essentially retests which require discipline in the testing process so tests and
groups of tests can be exactly repeated. Regression tests work best when the tests are automated and

should be repeatable with similar results expected. When dissimilar or unexpected results are

obtained from the same test sequence and the tests have not changed, something other than the tests
have changed. Regression tests, then, provide a benchmark or standard on which product
performance or capability is compared.

5.5.5.8 Pilot Case Testing

Pilot case testing is used to evaluate products from a user point of view. Pilot case testing is usually
referred to as Alpha testing or Beta testing. Alpha testing is product testing using in-house staff
acting as users in the environment where the product will be used. Testing should include product
installation and initialization and, if possible, be accompanied by any documentation. The testers
should be familiar with the actual user requirements and environments. The testing will evaluate the
product's functional capabilities in as-near a real user environment as possible.

In beta testing, the product is released to a limited and controlled group of''friendly users" for use in
actual operational environments by real users. Users are aware that the product is still in the test
phase. The beta test product should be as complete as possible and include documentation.

Both alpha and especially beta testing should be well supported by a robust problem reporting
system, a consistent and reliable CM and release generation system, and rapid response and fix for
discovered errors. Even though the beta testers are "friendly users," this is their first real exposure
of the almost completed product. Poor first impressions require enormous amounts of work to
overcome, and if the product is not really ready for beta test, may be counterproductive.

5.5.5.9 Object-Oriented Testing

There are few guidelines for object-oriented testing at the time of this writing. While testing of
object-oriented components can be viewed and tested similarly to procedural-code components, the
use of classes and inheritance can add complexity which must be addressed for adequate testing.

Testing object-oriented systems at the lowest routine levels and at the highest system level is
straightforward and similar to traditional unit and system testing methods. Low-end routines are
tested to ensure that data responses and logic responses are as expected. Highend system testing,
using "black box" or requirements specifications based functional testing, ensures that visible
performance, data, and functional requirements are satisfied.

Testing of object-oriented programs presents several problems not encountered in sequentially
executed programs. Traditional testing provides input to a process and checks the output against
known and expected results. Lower level process units cam be integrated into more complex units,
all of which have dependable sequences of execution. Object-oriented program and component
testing can be more difficult since objects have attributes of both data and methods, and, with
inheritance, objects can be combined and executed in an arbitrary sequence.
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Thefollowingmaterialisextractedfrom researchinto theacademicsoftware engineering literature
currently available on this topic and is included with the hope that it may be of some help to those

wrestling with the new problems unique to the testing of object-oriented software.

Harrold and McGregor [HARROLD] and Smith and Robson [SMITH] use a four-level model for

developing a testing strategy for object-oriented work. This model uses the algorithm, class, cluster
of classes, and system for levels of abstraction. Algorithmic is the lowest level routine which
manipulates data. Class is the interactions of routines and data encapsulated in a class. Clusters are
the interactions of cooperating classes. System level is all classes and programs necessary to run the

system.

Algorithmic and system level testing is similar to procedural code testing. Class testing is more
difficult because the services and data structures of the object contain the state and no ordering of the

execution is predictable. Traditional sequential data input-process--output testing models aren't
adaptable. "Functional testing techniques will not work since there is no test set to 'run' the code
with. Structural techniques are also not directly applicable to a class since it is difficult to analyze

control flow or data flow through it." [SMITH]

[HARROLD] takes the approach that if a class can be validated, than inheritances from that class can
reuse the testing information from the parent. With this information, only the new or replaced
attributes and any inherited attributes affected in the new context need to be tested, not the entire
subclass. This does require that a comprehensive testing of the parent class be performed and a

history kept.

Both [HARROLD] and[SMITH] have focused their research on intra-class testing and have left
interclass or class cluster testing for further research.

5.5.6 Recommended Test Tools

Two specific support tools that every project should acquire or produce are a test driver to
consistently run test cases and an automated release build capability. The test driver should support

any level of testing and be table or file data driven. The test data for any specific test case should be
saved and available for regression testing. An automated build tool (such as UNIX 'make') is part of
a controlled release generation capability which should be used to consistently build release versions
from known source and object libraries. Controlling changes, tracking module's versions, and

building from known source is especially useful during integration and system testing to isolate

changes and the side effects of those changes which introduce anomalous behavior.

5.6 Problem Reporting

Each task and project which develops and/or supports a product or provides a service should have a

procedure in place for reporting and recording problems, errors, and change requests. The
procedure may be automated and mechanized or it may be a manual paper system. The most
important point is that detected problems (especially those detected by the customer) be resolved--
and, for customer detected problems, that the customer be notified of the resolution.

The extent of a problem repotting system will depend on the product being supported, the

development approach, and the management approach. Small projects may only need an informal
system to support problem reporting and ensure the problems are resolved. Larger or higher risk
projects may need a formalized reporting and tracking system which is Configuration Control

managed.

The minimum information which should accompany a reported problem are: the problem date,

description, urgency, and who reported it, so that the problem can be duplicated or more information
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can be acquired. Much more information can be collected or added later, but other data collection
will depend on the needs of the development or management approach. Data that may be added by
the analyst or maintainer and are useful for managing the development process are as follows:

• Problem identification - a unique identifier for tracking and history.

• Severity - a measure of the level of the problem.

• Description of problem - what is the actual problem; this may not be the same as the reported
problem.

• Resolution - what actually was done to resolve the problem. This may include who was
assigned, CM information.

• Problem location - which software units contained the problem(s).

• Reason problem occurred - what was the cause, e.g., bad requirements, coding error,
improperly applied fix, documentation error.

• Problem report date, assign date, and resolution date.

• Time spent to analyze and repair.

Well managed projects can use problem reporting metrics as indicators of software health and
development progress, or as a means to improve the development process and methodology. (See
Section 3.8, Metrics). This information provides greater visibility into the development process and
software, and thus allows more informed decisions about the direction of the development and
problem areas in the software.
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Section 6

CONFIGURATION MANAGEMENT

Designing configuration management procedures is an exercise in compromise.
You must walk the thin line between chaos and stifling bureaucracy. The

procedures must be tight enough that most of the energy of the programming staff is
devoted to productive work, and paradoxically must also be loose enough that most
of the energy of the programming staff is devoted to productive work .... A good
rule of thumb is not to try to control every conceivable situation...allow escapes for
manual intervention... Remember at all times--the goal is to provide a stable

programming environment so that work can get done. Configuration management
is a means, not an end.

Wayne Babich, Software Configuration Management [BABICH]

6.1 Overview

Configuration Management (CM) is the process of identifying specific work items, defining known
versions of work items (baseline), controlling changes to the baseline and keeping records of the
version and changes to it. CM is applicable to all parts and phases of a development process, from
the documented requirements and design through software testing, acceptance and continuing

operation and maintenance.

Basic terms used in CM [SWASTD] are as follows:

• baseline - an established version of a work product used for controlling future changes,

subjected to configuration control

• configuration control - a systematic control process for a work product and changes to it
after a formal establishment of a baseline

• configuration item - an aggregation of hardware or software which is designated for

configuration management.

configuration management - the total process of baselining work products, controlling
changes to configuration items and their baseline work products and maintaining accounting
records of the change.

The CM activities should be appropriate for the items controlled. The underlying purpose of CM is
to keep track of what is being developed, tested, changed or released. The CM process should be
simple and practical for small projects or can be quite complex and require many checks and controls
and require several full time staff for complex or high risk projects.

How much CM is enough? Some questions that can help guide the amount of CM effort are:

• Who are the users, how many are there and what do they need?

• Do the developers waste time trying to figure out "What program is this?"

• How long will the software or product be in use?

54



• What risk factors apply to the software or the controlled configuration?

• How important is it that only controlled or approved additions to the software be made?

CM is an integral part of a coherent development process; it is not added on as an imposition to
development. CM, if done properly, aids and speeds development and testing by providing an
orderly and known environment and by reducing confusion and duplication. Knowing the changes
to basehne configurations aid testing and regression testing by providing differences between
releases and versions.

6.2 Configuration Management Process

6.2.1 Configuration Identification

Configuration identification is the fast and essential action in CM. It is basically selecting and
identifying by name the items to be controlled. Controlled items are usually functionally grouped--
for example, a group of software units that work together such as a disk controller, an application
program, or a system subcomponent. Both the group and its individual units are identified by name
and composition. Some types of software products that can be controlled are source, object,
executable and component libraries, testing software, utility software (such as scripts, 'make' files,
etc.), databases, schemas, data files, documents, problem reports and change requests.

After the "what" to control has been identified, the "when" to control needs to be defined. Selecting
items to be controlled and at what point to control them defines a specific baseline. Usually, version
numbers uniquely identify groups and constituent components of the controlled items. Formal
reviews, usually at the end of a phase, provide the "stamp of approval" that make the baseline
official. Formal configuration control has defined major baselines throughout the development cycle
with specific names: completed, approved requirements become the Allocated Baseline, designs and
test material become the Development Baseline, and tested and released software and its
documentation become the Product Baseline. For most projects, baselines can be established at the
end of or within any defined phase, such as, requirements, design, implementation, testing and/or
acceptance.

For rapid prototyping and other iterative methods, there will be numerous informal basehnes. These
informal baselines are established and controlled within the development group to keep known
versions distinct. At the end of each iteration the reviewed material should be saved off and either

baselined and/or archived with a list of changes and/or problems found.

Baselining, simply put, is reserving or setting aside for control purposes, a given set of items at a
specific point in time. Each of the items should be uniquely identified by version number or some
other means. Usually, a preliminary baseline is established prior to a review on materials. After

review changes are made, a final baseline of the material is done and development proceeds from that
known composition configuration. A copy of the baseline material is usually archived or set aside
for future reference.

6.2.2 Configuration Control

Configuration control describes responsibilities for controlling defined configuration items during
their lifetimes, what paperwork and forms are required to document configurations and changes, and

who is authorized to allow changes to controlled items, The actual flow of change requests,
evaluation, approval, accomplishment and baseline updates are described in the next section.

For any project or activity, responsibility for control of configuration items should reside with a
single individual, even if a group performs the process.
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Productsshouldbeknownandundercontrolatall times.Theconfigurationcontrol can be formal or

informal. Formal control applies to products delivered to or approved by the customer. Unless

assigned to the developer, control belongs to the customer. Changes to these items require approval

by the customer.

Between baselines and within the development environment, informal control rests with the

developer. The approved development plan provides the authority and directs the enhancement or
development activities leading to the next formal review and delivery of the product to the customer.

When change requests are received and evaluated, they may be assigned a category or class

dependent upon the scope of the change and whether formal or internal control is applicable. The

following descriptions are pertinent:

Class 1 changes may change program requirements or negotiated costs, or alter schedules and

require customer approval.

Class 2 changes clarify or correct errors to approved products, but aren't Class 1. These

require customer concurrence to accomplish.

Class 3 changes affect software requirements, user interfaces, architecture or data structures
under development or between baselines (but are not class 1 or 2). Class 4 corrects or clarifies

errors.

Change requests (CR) provide a format for requesting a change, providing justification and
evaluation of change extent, approving or authorizing and accomplishment sign-off when complete.
The CR information is used by the change authority to decide whether to approve the change or not.

Change authority and approval is done only by the organization that holds the configuration control.
In larger development environments, the change authority is a Change Control Board (CCB) which
may be composed of both the developer and the customer which jointly make change control
decisions and approvals. The CCB makes decisions based on a Change Request, any associated
information in the context of the project plan (budget and schedule) and objectives.

6.2.3 Change Control Flow

Change Control flow and processing describe the responsibility path that a change follows from its
initiation through actual update of the baseline. The essential elements of the flow will be the same
regardless of the size of the CM effort and number of participants. CM, QA, development staff and
the customer may all participate in change control. In small projects this may only be one person for

all parts of the process. The degree of formality, tracking and control are also dependent on the

project size.

Figure 6.3-1 provides a depiction of a possible changeflow process in a project with separate CM,
QA, development groups and a combined customer-developer Change Control Board (CCB). The
activities can be divided into three major activities:

• investigation
• approval and
• implementation.

CM performs primarily a control and tracking function. Any project's CM may be more or less

complex, depending on project requirements.
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Figure 6.3-1 Possible CM Change Flow

In the figure, Software Problem Reports (SPRs) and Change Requests (CRs) (in this discussion we
will refer to both as "requests") are received form various sources and (1) logged by CM. The

requests are forwarded to development for (2) problem evaluation and work estimate. QA receives
the request for evaluation and (3) adds its evaluation and work estimate for testing and validation.
CM (4) adds its configuration estimate to possibly generate the applicable baseline and to re-establish
a new baseline if necessary and release the changes. CM also logs the request's progress.
Depending on the classification of the request, CM routes the request to the CCB (5), if customer
approval or concurrence needed, or (6) to development management for scheduling and incorporation
into regular work. Class 3 and 4 requests are also (7) sent to CM for logging for progress tracking
or closure for disapproved items. Class 3 and 4 items may be reclassified higher and re-input to the

CCB through CM (4).

CCB (5) evaluates requests against project objectives and resources and approves for development or
disapproves. The decisions are routed to development mfinagement through (7) CM for logging and,
if no action is required, closing the request. Management schedules the work for (8) development,
(10) QA and (11) CM as part of a scheduled release or as an immediate fix.
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After theworkhasbeenscheduled,development(8)performsthework andunit/integrationtestsand
passesthechangesto (10)QA for anyindependentandsystemtesting. As necessary,SPRsorCRs
maybe generated (back to (1)) ff a revealed problem is outside the scope of the approved change.
Completed and tested software along with any documentation is forwarded to (11) CM for logging,
closing the request and establishing (12) a new baseline. CM also provides (13) change notification,
release of software changes and new/updated documentation to the user community.

6.3 Suggested CM Procedures by Project Size

The following sections describe possible CM activities for three different sizes of software projects at
Ames. The assumption is made that no high risk software is being produced so a moderate level of

QA and CM support is needed. The three scenarios present minimum recommended CM activities;
more effort can be spent on CM. There axe several standard procedures which should be common to
any size activity or task to provide minimum software control and security to data and work. These
are"

• Separate the development, test and release versions of the product. Make sure each is defined
and well known. If possible separate the activities by assigning responsibility or at least by

doing them at different times.
• Make the compile and build process (or any regularly performed activity) automated and

consistent.
• Back up and archive at a remote site the released version (source, utilities and executable);

uniquely identify it and make sure related documentation and design information are available.
• Back up the work in progress regularly, perhaps incrementally each day.

6.3.1 Small Project CM

Minimal CM activities for any small project:

Requirements (researcher requests) and discovered problems should be written and saved in a
readily available notebook. Major problems, changes to functionality and schedule changes
should be discussed with the customer.

A source control system and an automated 'make' should be used to keep version differences

and provide a consistent build and link cycle.
Use separate source directories to generate object libraries to speed up build time and provide a
basis for reuse.

Reported problems and change requests should be logged when received, tracked to

completion and closed when done.
A standard problem report and change request form with specific questions should be used to

help pinpoint user problems and speed the solution.
Any release should go through a standard integration, test and release process separate from
the development activity. For low risk tasks, this might be accomplished by using a separate
test and release directory.

6.3.2 Medium Project CM

Minimal CM activities for any medium size project:

• Problem reports and change requests should be logged and kept open until accomplished or
closed. The log should help drive the Project Manager's work list and schedule.

• An informal but planned release cycle should be used with planned dates and known
enhancements.

• Use a code or version control system (e.g. SCCS)
• Hold development technical reviews/inspections to establish requirements baseline.
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• Releaseshouldincludeversionlist, designor structurenotes,machineenvironment
requirementsandbuild instructionswith anyassociatedutilities, 'make',build orscript files.

• Archivesof thelast3releaseswith thedocuments,sourcecodeandexecutablesnecessaryto
run it.

6.3.3 Large Project CM

Minimal CM activities for any large size project:

• One team member should be assigned as CM librarian/build custodian.

• Define a formal release cycle with publicized release, enhancement and change notification

• Use a code or version control system (e.g. SCCS).

• Use a problem reporting and tracking system.

• Use a formal technical reviews/Inspections establish baselines in development products.

• Follow formal CM change control and approval of changes.

• Keep a list of installed customers/sites for change/enhancement/release notification.

• Archive of all supported releases should be readily available and include the documents,
source code, utilities, libraries, test data and executables necessary to build, test and rim.
Archives of older versions should be stored and retrievable.

6.4 CM for Rapid Prototyping Projects

CM for rapid prototyping and other iterative developments is similar to sequential developments for
the major deliverable milestones. The developer has internal CM responsibility for the products of
each iteration (between the major milestones), just as with a sequential development. Problem lists
and results of the iteration reviews and internal technical reviews or Inspections must be kept,

maintained and resolved

When the prototype iterations are complete and approved by the customer, the prototype is formally
baselined and controlled. The design is then completed, reviewed and corrected, delivered and

formally controlled just as in a sequential development. The prototype model is then fully
implemented to the design, tuned, optimized, tested and delivered for Acceptance Testing and CM
baseline and control.
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Section 7

ABBREVIATIONS AND ACRONYMS

This section contains an alphabetized list of definitions for special abbreviations and acronyms used
in this volume.

AHB

AI

CASE

CCB

CCF

COTR

CM

CTO

DFD

DID

DoD

ERD

GFE

LOC

NHB

OCM

OO

OOA

OOD

OOP

QA
RP

RTSA

SA

SEPG

SMAP

SPR

STD

TBD

TQM
V&V

WBS

Ames Handbook

Artificial Intelligence

Computer-Aided Systems Engineering

Configuration Control Board

Central Computing Facility

Contracting Officer's Technical Representative

Configuration Management

Contract Task Order

Dataflow Diagram

Data Item Description

Department of Defense

Entity-Relationship Diagram

Government-furnished equipment

Lines of code

NASA Handbook

Object Control Matrix

Object-oriented

Object-Oriented Analysis

Object-Oriented Design

Object-Oriented Programming

Quality Assurance

Rapid Prototyping

Real-Time Structured Analysis

Structured Analysis

Software Engineering Process Group (part of Task 1)

(NASA) Software Management Assurance Program

Software Productivity Research, Inc.

State-Transition Diagram

To be determined (at a later date)

Total Quality Assurance

Verification and Validation

Work Breakdown Structure
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Section 8

GLOSSARY

This section contains an alphabetized list of definitions for special terms used in this volume.

Assurance - includes any and all activities, independent of organization conducting the activity, that
demonstrate the conformance of a product to a prespecified criteria (such as to a design or to a

standard).

Baseline - an established version of a work product used for controlling future changes subjected to

configuration control.

Configuration control - a systematic control process for a work product and changes to it after a
formal establishment of a baseline.

Configuration item - an aggregation of hardware or software which is designated for configuration

management.

Configuration management - the total process of baselining work products, controlling changes to
configuration items and their baseline work products and maintaining accounting records of

the change.

Code Q- NASA Office of Safety, Reliability, Maintainability, and Quality Assurance.

Critical Design Review - the phase transition review for the Detailed Design life-cycle phase.

Data Item Description - the table of contents and associated content description of a document or
volume.

Deliverable - a contractually defined or normally expected product.

Life-cycle - the period of time that begins when a product is conceived and ends when the product

is no longer in use.

Phase - a defined process step with required inputs, defined activities and specified outputs.

Quality assurance - A subset of the total assurance activities generally focused on conformance to
standards and plans. In general, these assurance activities are conducted by the SRM & QA

organization.

Risk - the combined effect of the likelihood of an unfavorable occurrence and the potential impact

of that occurrence.

Risk Management - the process of assessing potential risks and reducing those risks within dollar,

schedule, and other constraints.

Roll-out - A mechanism for recording sections of a document in physically separate volumes while

maintaining traceability and links. When using roll-out, a volume is subordinate to a parent
document or volume.
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Testing- theprocessof exercisingor evaluating an information system or component by manual or

automated means to demonstrate that it meets specified requirements or to identify differences
between expected and actual results.

Validation - 1) assurance activities conducted to determine that the requirements for a product are

correct; i.e. to build the right product. 2) (IEEE Std 729-1983) the process of evaluating
software at the end of the software development process to ensure compliance with software
requirements. _ _ . _ _

Verification - 1) assurance activities conducted to determine that a product is being built correctly in
accordance with design and requirements specifications; i.e., to build the product right. 2)
(IEEE Std 729-1983) "The process of determining whether or not the products of a given
phase of... development ... fulfill the requirements established during the previous phase."

62





Form Approved

REPORT DOCUMENTATION PAGE OMSNo.o7o4-o188
Public reporting burden for this collection of information is estimated to average t hour per relponee, including the time toq reviewing instructions, searching existing data sources,
gathering and maintaJnlng the data needed, and completing and reviewing the collection of information. Sand comments regarding this burden estimate or any other aspect of thim
collection of information, including suggestions for reducing this burden, to Wuhlngton Headquarters Services, Directorate for inf(xmatton Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget, Pipe,work Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2, REPORT DATE

September 1993
4. TITLE AND SUBTITLE

Software Engineering Guidebook

6. AUTHOR(S)

John Connell and Greg Wenneson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Sterling Software, Inc.

1121 San Antonio Road

Palo Alto, CA 94303

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

Point of Contact:

3. REPORTTYPEANDDATESCOVEREDContractor Re :_ort

5. FUNDINGNUMBERS

NAS2-13210

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-93135

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR- 177625

Robert Carlson, Ames Research Center, MS 233-10, Moffett Field, CA 94035-1000
(415) 604-6036

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category - 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) sup-

ported processes and techniques for engineering quality software in NASA environments. Three process

models are supported: structured, object-oriented, and evolutionary rapid-prototyping.The guidebook covers

software life-cycles, engineering, assurance and configuration management. The guidebook is written for

managers and engineers who manage, develop, enhance and/or maintain software under the Computer Soft-
ware Services Contract.

14. SUBJECT TERMS

Software-engineering, Software-methodology, SEPG

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

68
16. PRICE CODE

A04
19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std z3g-r8


